Где находится частица, когда она пребывает в состоянии суперпозиции по импульсу?

При обсуждении рис. 6.1 говорилось, что частица, находящаяся в отдельном собственном состоянии импульса, делокализована по всему пространству. Это совсем не согласуется с описанием фотоэлектрического эффекта, поэтому теперь возникает вопрос: где находится частица, которая пребывает в состоянии суперпозиции? Определённый намёк на ответ мы уже получили, обсуждая рис. 6.2–6.4. Из рис. 6.3 и 6.4 видно, что суперпозиция волн разной длины порождает распределение, которое концентрируется в некоторой области пространства. На рис. 6.3 длина волны изменяется от 0,8 до 1,2 и распределение выглядит не столь сильно сконцентрированным в одной области, как на рис. 6.4, где длина волны изменяется от 0 до 4. На рис. 6.6 показано пространственное распределение, соответствующее распределению волн (импульсных собственных состояний), изображённому на рис. 6.5. Есть положение, где пространственное распределение достигает максимума, и это положение также является средним. Для значений x, больших и меньших, чем x0, амплитуды (вероятности) становятся меньше.

Рис. 6.6.График вероятности обнаружения частицы в точке x, когда она находится в суперпозиции собственных состояний по импульсу, показанной на рис. 6.5. Точка x0 соответствует среднему положению с наибольшей вероятностью. Величина ?x служит мерой ширины пространственного распределения

Что означает распределение вероятности положений (значений x)? Частица с распределением вероятности по импульсам, изображённым на рис. 6.5, даёт пространственное распределение вероятности, представленное на рис. 6.6. Одиночное измерение положения даёт конкретное значение координаты. Обозначим его x1. Выполнение измерения абсолютно малой квантовой частицы вызывает возмущение, которым нельзя пренебречь, что приводит к коллапсу пространственного распределения вероятности до собственного значения с чётко определённой координатой. Чтобы выполнить другое измерение, систему (частицу) надо подготовить заново прежним способом, тогда она будет иметь такое же распределение вероятности по импульсу и, следовательно, такое же пространственное распределение вероятностей. Второе измерение положения частицы даст значение x2, которое в общем случае не будет совпадать с x1. Если, подготавливая систему вновь и вновь, выполнить много измерений положения, обнаружится распределение вероятности по координате, изображённое на рис. 6.6. Величина ?x служит мерой ширины пространственного распределения. Пространственное распределение, изображённое на рис. 6.6, определённое по множеству измерений идентично подготовленных систем, говорит о вероятности получить при измерении любое конкретное значение положения. С наибольшей вероятностью измерение обнаружит частицу где-то вблизи точки x0, но для любого отдельного измерения невозможно сказать, где будет найдена частица. В то же время мала вероятность получить при измерении положения значение, далёкое от x0.