Что уравнение Шрёдингера говорит нам о водороде

Что даёт нам решение уравнения Шрёдингера для атома водорода? Оно позволяет определить энергетические уровни атома водорода и волновые функции, связанные с каждым состоянием этого атома. Волновые функции — это трёхмерные волны амплитуды вероятности, которые описывают области пространства, где может быть обнаружен электрон. Решение Шрёдингера для задачи об атоме водорода даёт значения энергетических уровней, совместимые с эмпирически полученной формулой Ридберга:

En=?RH/n2,

где n — главное квантовое число. Это целочисленная величина, которая может принимать значения ?1, то есть быть больше либо равной единице.

Разница в энергии между любыми двумя энергетическими уровнями даётся формулой Ридберга. Однако в решении Шрёдингера величина RH не является эмпирическим параметром. Решая эту задачу, Шрёдингер нашёл, что постоянная Ридберга связана с фундаментальными постоянными формулой

RH=???e4/8??02?h2.

Здесь h — постоянная Планка;

e — заряд электрона;

?0=8,54?10?12 Кл2/Дж?м — постоянная, называемая диэлектрической проницаемостью вакуума;

? — приведённая масса протона и электрона:

?=mp?me/(mp+me),

где mp и me — массы протона и электрона соответственно. Значения заряда и массы электрона и протона уже приводились выше.

Если Ридберг получил экспериментальные данные и вывел эмпирическую формулу, описывающую линии спектра атома водорода, то в решении Шрёдингера для задачи об атоме водорода квантовая теория используется совершенно иным образом. Мы немного задержимся, чтобы восхититься триумфом квантовой теории, достигнутым в 1925 году. При выводе Шрёдингером энергетических уровней атома водорода не использовалось никаких подгоночных параметров. Все необходимые константы — это фундаментальные свойства частиц и электростатического взаимодействия, благодаря которому отрицательно заряженный электрон притягивается к положительно заряженному протону. Шрёдингер не обращался к экспериментальным данным, чтобы подогнать константу RH для лучшего совпадение с ними. Он создал теоретический формализм и применил его к атому водорода. Его теория в точности воспроизвела результаты экспериментальных наблюдений — спектральные линии атома водорода, опираясь только на фундаментальные постоянные.

В отличие от теории Бора уравнение Шрёдингера с успехом применялось к огромному числу других задач, включая атомы, отличные от водорода, а также небольшие и крупные молекулы. Как уже упоминалось, для систем крупнее атома водорода, то есть для атомов и молекул, состоящих более чем из двух частиц, уравнение Шрёдингера нельзя решить точно. Однако было разработано множество эффективных приближённых методов решения уравнения Шрёдингера для атомов, молекул и других типов квантовомеханических систем. Благодаря развитию компьютеров и их огромной вычислительной мощности стало возможно решать уравнение Шрёдингера для очень больших и сложных молекул. В следующих главах рассказывается о формах молекул. Решение уравнения Шрёдингера для молекулы даёт её энергетические уровни и волновые функции. Волновые функции содержат информацию, необходимую для определения формы молекул.