5. Свет: волны или частицы?

Объяснение фотоэлектрического эффекта, которое обсуждалось в главе 4, требует нового теоретического описания интерференционного эксперимента, изображённого на рис. 3.4. Для того чтобы объяснение этого эксперимента не противоречило описанию фотоэлектрического эффекта, надо отказаться от классического мышления и совершить большой скачок к мышлению квантовомеханическому. Обсуждая в главе 2 абсолютные размеры, мы говорили о том, что измерению малой в абсолютном смысле системы всегда сопутствует возмущение, которым нельзя пренебречь. Однако мы не обсуждали природу и следствия такого возмущения. Теперь пришло время вплотную заняться выяснением истинного характера материи и тем, что происходит, когда мы выполняем измерения.

Проблема, с которой мы столкнулись, состоит в том, что для объяснения явления интерференции на рис. 3.4 используются световые волны, а для объяснения фотоэлектрического эффекта, представленного на рис. 4.3 и 4.4, — «частицы света» — кванты, называемые фотонами. В классической модели световых волн для количественного описания интерференции используются уравнения Максвелла. В этой теории световая волна математически описывается волновой функцией. Функция задаёт её амплитуду, частоту и пространственную локализацию. Входящая световая волна характеризуется одной волновой функцией. В классическом представлении после того как световая волна попадает на полупрозрачное расщепляющее зеркало, половина волны уходит по одному плечу интерферометра, а половина — по другому (см. рис. 3.4). Теперь есть две волны и две волновые функции — по одной для каждой волны. Эти волновые функции описывают волны, которые вдвое уступают по интенсивности первоначальной входящий волне и имеют разную локализацию — в двух плечах интерферометра. Если эти две волновые функции математически объединить для описания того, что происходит в области перекрытия, обведённой кружком на рис. 3.4, то можно рассчитать интерференционную картину. Всё это так хорошо работает, что считалось, будто то же самое математическое представление может быть применимо и к фотонам.