Частица в ящике — квантовый случай

Что изменится, если теперь мы перейдём к рассмотрению квантового ракетбола? Площадка остаётся идеальной, но теперь её длина не 12 м, а 1 нм (10?9 м). Кроме того, частица обладает массой электрона, равной 9,1?10?31 кг, а не 0,04 кг. Таким образом, это задача о квантовой частице в ящике.

Сразу можно сказать, что наименьшая энергия квантовой частицы в ящике нанометрового размера не может быть нулевой. На классической ракетбольной площадке возможна скорость мяча V, равная нулю, а значит, нулевым может быть и импульс p=m?V. Кроме того, положение мяча x имеет чётко определённое значение. Например, мяч может лежать неподвижно (V=0) точно посередине площадки, что соответствует x=L/2. В таком случае для нашего классического ракетбольного мяча ?p=0 и ?x=0. Значение произведения ?x??p=0 не соответствует принципу неопределённости Гейзенберга, что нормально, поскольку речь идёт о классической системе. Однако абсолютно малая частица в ящике нанометрового размера является квантовым объектом и должна подчиняться принципу неопределённости, утверждающему, что ?x??p?h/4?. Если V=0 и x=L/2, то мы знаем одновременно x и p, а значит, ?x??p=0, как в классическом ракетболе. Для квантовой системы это невозможно. Таким образом, V не может быть равно нулю. Частица не может неподвижно пребывать в заданной точке. А если значение V ненулевое, то и значение Ek не может быть равно нулю. Принцип неопределённости говорит, что наименьшая энергия нашего квантового ракетбольного мяча не может быть нулевой. Квантовый мяч никогда не пребывает в неподвижности.