Музыка

Музыка

Отличие музыкального звука от шума уже иллюстрировалось кривыми звукового давления. Простой музыкальный тон создается периодическим колебанием определенной частоты. Сложные звуки представляют собой сочетания чистых тонов.

Оркестр музыкантов воспроизводит почти все слышимые частоты. Диапазон рояля охватывает тона с частотами примерно от 25 до 4000 Гц.

Не все комбинации звуков доставляют удовольствие слушающему. Оказывается, приятное ощущение создают такие звуки, частоты колебаний которых находятся в простых отношениях. Если звуковые частоты находятся в отношении 2 : 1, то говорят об октаве, если 5 : 4 – о большой терции, отношение 4 : 3 дает кварту, а 3 : 2 – квинту. Ощущение благозвучности теряется, если частоты звуковых колебаний нельзя представить такими простыми отношениями. Тогда музыканты говорят о диссонансе. Ухо хорошо ощущает сочетания различных тонов. Поэтому люди даже с посредственным слухом чувствительны к диссонансам.

При помощи бесклавишных инструментов – типа скрипки – музыкант может взять любой тон и дать звучание любому сочетанию тонов.

В таком инструменте, как рояль, дело обстоит иначе. Струны рояля настроены на определенные частоты, удар о клавиши не может изменить тональности звука. Клавиатура рояля включает семь полных октав. Нижнее «до» дает тон с частотой 32,64 Гц, а верхнее – с частотой 32,64 ? 27 ? 4178 Гц. Проблема состоит в том, как разделить октавы, т.е. какие промежуточные тона следует ввести, чтобы удовлетворить двум условиям. Во-первых, частоты должны находиться в наивозможно простых отношениях. Во-вторых, надо разделить октаву на равные интервалы (отношения между частотами), так как только в этом случае можно играть одну и ту же мелодию, начиная с любой ноты октавы (та же мелодия в другом тоне). Строго говоря, эти два требования противоречивы. Приближенно они осуществляются при использовании так называемого темперированного строя.

Посмотрим, что получится, если разделить октаву на 12 равных интервалов. Каждый из этих интервалов будет равен 21/12 = 1,059. Это значит, что отношение двух соседних тонов будет равно этому числу. Выпишем теперь следующие цифры:

К полному своему удовлетворению музыкант замечает, что арифметика решает его задачу: октава разделена на строго равные интервалы, и в то же время отношения многих гонов весьма близки к отношениям простых чисел. Мы находим здесь и квинту (7), и кварту (5), и большую терцию (4), так как приблизительно 1,498 ? 3/2; 1,260 ? 5/4, а 1,335 ? 4/3. Превосходно обстоит дело и в других случаях, где разница не превосходит 1 %: 1,414 ? 7/5; 1,122 ? 9,8; 1,587 ? 8/5; 1,682 ? 5/3; 1,888 ? 17/9, и только первый интервал 1,059 ? 18/17 дает явный диссонанс.

Небольшие отклонения от чистого строя (т.е. такого, в котором отношения частот в точности равны отношению целых чисел) для слуха мало заметны, и темперированный строй рояля получил распространение.