Закон сохранения вращательного момента

Закон сохранения вращательного момента

Если связать два камня веревкой и с силой бросить один из них, то второй камень полетит вдогонку за первым на натянутой веревке. Один камень будет обгонять второй, перемещение вперед будет сопровождаться вращением.

Забудем про поле тяготения – пусть бросок произведен в межзвездном пространстве.

Силы, действующие на камни, равны друг другу и направлены навстречу вдоль веревки (это ведь силы действия и противодействия). Но тогда и плечи обоих сил по отношению к любой точке будут одинаковы. Равные плечи и равные, но противоположные по направлению силы дают равные и противоположные по знаку моменты сил.

Суммарный момент сил будет равен нулю. Но отсюда следует, что будет равно нулю и изменение вращательного момента, т.е. что вращательный момент такой системы остается постоянным.

Веревка, связывающая камни, понадобилась нам для наглядности. Закон сохранения вращательного момента справедлив для любой пары взаимодействующих тел, какую бы природу ни имело это взаимодействие.

Да и не только для пары. Если изучается замкнутая система тел, то силы, действующие между телами, всегда можно разбить на равное количество сил действия и противодействия, моменты которых будут попарно уничтожаться.

Закон сохранения суммарного вращательного момента универсален, верен для любой замкнутой системы тел.

Если тело вращается вокруг оси, то его вращательный момент равен

N = mvr,

где m – масса, v – скорость и r – расстояние от оси. Выражая скорость через число оборотов в секунду п, имеем:

v = 2пnr и N = 2?mnr2,

т.е. вращательный момент пропорционален квадрату расстояния от оси.

Сядьте на табуретку с вращающимся сидением. Возьмите в руки тяжелые гири, широко расставьте руки и попросите кого-нибудь привести вас в медленное вращение. Теперь быстрым движением прижмите руки к груди – вы неожиданно начнете вращаться быстрее. Руки в стороны – движение замедлится, руки к груди – движение ускорится. Пока из-за трения табуретка не перестанет вращаться, вы успеете несколько раз изменить свою скорость вращения.

Отчего это происходит?

Вращательный момент при неизменном количестве оборотов в случае приближения гирь к оси упал бы. Для того чтобы «скомпенсировать» это уменьшение, и увеличивается скорость вращения.

Успешно используют закон сохранения вращательного момента акробаты. Как акробат выполняет «сальто» – переворачивание в воздухе? Прежде всего – толчок от пружинящего настила или от руки партнера. При толчке тело наклонено вперед, и вес вместе с силой толчка создают мгновенный момент силы. Сила толчка создает движение вперед, а момент силы обусловливает вращение. Однако это вращение медленное, оно не произведет впечатления на зрителя. Акробат поджимает колени. «Собирая свое тело» поближе к оси вращения, акробат значительно увеличивает скорость вращения и быстро переворачивается. Такова механика «сальто».

На этом же принципе основаны движения балерины, совершающей быстрые, следующие один за другим повороты. Обычно начальный вращательный момент придает балерине ее партнер. В этот момент корпус танцовщицы наклонен; начинается медленное вращение, затем изящное и быстрое движение – балерина выпрямляется. Теперь все точки тела находятся ближе к оси вращения, и сохранение вращательного момента приводит к резкому увеличению скорости.