Миф пятнадцатый: в России старое рентгеновское оборудование, и потому медицинское облучение больше, чем на западе

We use cookies. Read the Privacy and Cookie Policy

А теперь выясним, насколько серьёзные дозы даёт медицинское облучение. Применяться оно может в трёх целях:

а) массовое обследование практически здоровых людей;

б) диагностика больных людей;

в) лечение онкологических заболеваний.

А) Массовые рентгеновские обследования применяют главным образом для выявления туберкулёза. В этом случае мы имеем дело с малыми дозами внешнего облучения (вспомним: норматив не более 1 мЗв/год). Зато число облучаемых людей очень велико: ежегодному облучению подвергается большая часть взрослого населения России. Индивидуальные дозы скромные, коллективные дозы огромные.

Б) Современные методы диагностики (например, компьютерная томография) дают больше информации о состоянии внутренних органов и могут использоваться для раннего выявления онкологических заболеваний. Но и доза тут выше: 1–7 мЗв за процедуру [1].

Всё чаще применяется радионуклидная диагностика: пациенту вводят препарат, содержащий микроскопические количества короткоживущего радионуклида (например, йода-131 или технеция-99 м). Используя специальный детектор и компьютерную обработку, можно получить изображение исследуемого органа. Это даёт более ясную картину, чем рентгеновское обследование. Благодаря короткому периоду полураспада радионуклидов, небольшой энергии излучения и быстрому выведению радиоактивных препаратов из организма пациент получает небольшую лучевую нагрузку.

В) Ионизирующие излучения используются для лечения заболеваний. Лучевая терапия рака является одним из трёх ведущих методов лечения, наравне с хирургическим методом и химиотерапией. Раковые клетки обладают повышенной чувствительностью к ионизирующему излучению и погибают под действием направленного лучевого удара.

На сегодняшний день существуют три основных вида лучевой терапии:

– дистанционное облучение пучками электронов или гамма-квантов, получаемых при помощи линейного ускорителя. К разновидности этого метода относят лучевую хирургию (гамма-нож), когда опухоль уничтожают целиком, облучая из мощной «кобальтовой пушки»;

– дистанционная радиотерапия пучками заряженных частиц, протонов или тяжелых ионов. Такие «крупнокалиберные» пули получают на сверхпроводящих циклотронах или синхротронах. Например, протонная лучевая терапия (ПЛТ) – дорогостоящий, зато наиболее эффективный и щадящий метод облучения;

– брахитерапия, или контактная радиотерапия, когда радиоактивный материал вводят внутрь опухоли либо рядом с ней.

Опасна ли лучевая терапия, ведь дозы тут достигают 5–6 Гр? Во-первых, такими дозами пациентов облучают ради спасения их жизни. Во-вторых, облучению подвергается не всё тело и даже не отдельный орган, а лишь его часть (эффективная доза будет много ниже). И в-третьих, облучение дробное, проводится в несколько сеансов, и реализуемая доза будет в разы меньше (обратили внимание: мы успешно беседуем на профессиональном языке?). Поэтому лучевая терапия редко приводит к возникновению вторичных опухолей (иногда они появляются через 10–20 лет после облучения).

Для лучевой терапии характерны высокие дозы и небольшое число облучаемых лиц. Для рентгеновского обследования – наоборот: малые дозы и огромные масштабы. Поэтому главную часть лучевой нагрузки на население (коллективную дозу) даёт рентген: на его долю приходится около 90 % всей медицинской дозы. Средняя же доза медицинского облучения на одного жителя России невелика и составляет 0,6 мЗв/год, и от 0,1 до 0,94 мЗв по регионам [2–4]. Эти цифры сопоставимы со среднемировыми дозами медицинского облучения [5].

Сегодня любой из нас имеет право знать, какую дозу он получает. В соответствии с Федеральным законом о радиационной безопасности населения (статья 17) и Федеральным законом об атомной энергии (статья 19) гражданину по его требованию предоставляется полная информация о величине планируемой и фактически полученной им дозы при обследовании или лечении. Все дозы медицинского облучения фиксируются в карточке, с которой пациент по его просьбе должен быть ознакомлен.

Годовые дозы от медицинских источников занимают второе место после природного облучения, а их доля в суммарной дозе облучения в среднем по России составляет около 15 % [6].

Однако по регионам наблюдается большой разброс годовых доз медицинского облучения (рис. 15.1).

Рис. 15.1 Средние дозы облучения субъектов РФ за счёт источников ионизирующих излучений в медицинской диагностике в 2010 году [3]

Мы видим, что дозы облучения жителей Санкт-Петербурга в 10 раз выше, чем в республике Ингушетия. Это хорошо или плохо? Сразу не ответить. Ведь в медицинской диагностике, не говоря о лучевой терапии, каждый миллизиверт часто окупается здоровьем и жизнью пациента.

Медицинское облучение должно быть строго обосновано, особенно в случаях повышенного облучения. В отличие от других видов медицинское облучение – сверхострое: пациент получает дозу за секунды или минуты. А природное, техногенное и даже аварийное облучение происходит в течение месяцев, лет и даже десятилетий. И по этой причине необходимо исключать ненужное облучение, особенно в отношении детей и беременных женщин.

Но может возникнуть законный вопрос. Медицинскому облучению подвергается огромное число лиц. Коллективная доза очень велика, так? Но ведь такое облучение опасно – по причине массовости. Или нет?

Расмотрим на конкретном примере. Медицинское облучение российского населения: 100 миллионов россиян умножаем на среднюю годовую дозу 0,6 мЗв – получаем коллективную дозу 60 000 чел. – Зв.

Второй случай (условный) – серьёзная радиационная авария или ядерная бомбардировка города: 300 000 облучённых при средней индивидуальной дозе 200 мЗв. Коллективная доза такая же, как в первом примере – 60 000 чел. – Зв.

Получается, что в обоих примерах от рака может умереть одинаковое число облучённых, равное 0,05 ? 60 000 = 3000 (вспомним главу 10). Более того, для медицинского облучения последствия окажутся ещё хуже! Ведь рентген – процедура ежегодная, а серьёзные аварии случаются редко.

Это что же выходит? От родной медицины – 3000 смертей от рака! Каждый год! Безо всяких чернобылей и хиросим! Что же творится, люди добрые? Караул!

На самом деле всё немножко не так. МКРЗ в публикации 101 (цитируется по [7]) специально оговаривает:

«Коллективная доза в 1 чел. – Зв, получающаяся из 10-ти индивидуальных доз по 100 мЗв, и такая же коллективная доза, получающаяся из 1000 индивидуальных доз по 1 мЗв, не будут оцениваться одинаково»: 10 ? 100 мЗв ? 1000 ? 1 мЗв».

Вы понимаете, что происходит? МКРЗ, принявшая беспороговую линейную зависимость и концепцию коллективной дозы, сама же отговаривает от вульгарного их применения: мол, нельзя «в лоб» сравнивать последствия облучения слишком разнящимися дозами. Уфф, отлегло.

Итак, мы рассмотрели природные и медицинские источники облучения. Но люди куда больше боятся атомных станций и вообще техногенного облучения. Давайте к нему присмотримся.

Литература

1. О состоянии санитарно-эпидемиологического благополучия населения в РФ в 2013 году: Государственный доклад. – М.: Роспотребнадзор, 2014. – 191 с.

2. Результаты радиационно-гигиенической паспортизации в субъектах Российской Федерации за 2009 год / Радиационногигиенический паспорт Росссийской Федерации. – М: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2010. – 132 с.

3. Дозы облучения населения РФ в 2010 году / Информационный сборник. – Барышев Н.К. и др. – Роспотребнадзор, Санкт-Петербургский НИИ радиационной гигиены им. профессора П.В. Рамзаева. – СПб, 2011. – 62 с.

4. Анастасия Литвинова. Радиационный фон. И стоит ли опасаться рентгена? – Вопросы экологии, сентябрь 2014.

5. Булдаков Л.А., Калистратова В.С. Радиационное воздействие на организм – положительные эффекты. ? М.: Информ-Атом, 2005. – 246 с.

6. Государственный доклад Роспотребнадзора «О состоянии санитарно-эпидемиологического благополучия населения в РФ в 2012 году. Мониторинг радиационной обстановки в РФ» – М: Роспотребнадзор. – 176 с.

7. Российский национальный доклад: 25 лет Чернобыльской аварии. Итоги и перспективы преодоления её последствий в России. 1986–2011 / Пучков В.А., Онищенко Г.Г., Арутюнян Р.В. и др. – М., 2011. – 160 с.