МОДЕЛЬ: АНСАМБЛЬ ПУЗЫРЬКОВ
МОДЕЛЬ: АНСАМБЛЬ ПУЗЫРЬКОВ
Поговорим в начале главы об одной мудрой и красивой модели кристалла. По пути к концу книги она нам понадобится много раз.
О модели мертвого кристалла или, быть может, правильнее о мертвой модели кристалла мы недавно вспоминали: деревянные шарики — атомы, соединяющие их проволочки — символы связей, существующего взаимодействия. Здесь — о модели кристалла, в которой взаимодействие между атомами не заморожено. О ней, великолепно иллюстрирующей (другие причастия: передающей, отражающей) структуры реального кристалла и имеющиеся в нем дефекты, следует рассказать, а затем и воспользоваться ею. Модель эта не нова. Была она придумана выдающимся английским кристаллофизиком Л. Бреггом еще в начале 40-х годов нашего столетия, а затем осуществлена им и его сотрудниками Д. Наем и В. Ломером. Так мы ее и будем называть: модель БНЛ — Брегга — Ная — Ломера.
Пожалуй, самое важное следствие взаимодействия между атомами в кристалле непосредственно вытекает из простейшего факта, который состоит в том, что расстояние между двумя соседними атомами в кристалле при постоянной температуре имеет вполне определенную величину. Это — результат эксперимента, святая святых науки о кристалле. Речь, разумеется, идет о расстоянии между положениями, около которых атомы совершают колебания. Определенное расстояние — это означает, что, если мы попытаемся искусственно его увеличить, атомы, противясь этому, будут друг к другу притягиваться, а если попытаемся его уменьшить, атомы будут отталкиваться, стремясь восстановить определенное расстояние между собой. При некотором расстоянии (именно его мы и назвали определенным) между атомами силы притяжения и отталкивания оказываются равными по величине. На этом расстоянии и расположены атомы в решетке.
Итак, только из факта наличия определенного расстояния между атомами следует, что взаимодействие между ними носит черты и притяжения, и отталкивания. В основе этих двух противоборствующих тенденций во взаимодействии лежат силы электрического происхождения. В кристаллах различного типа они проявляют себя различно: по-одному в металлах, по-иному в диэлектриках и совсем по-иному в полупроводниковых кристаллах. Не стану, не договаривая, намекать на существо этих различий и тем более не стану рассказывать об этом подробно. Здесь нам достаточно знать, что взаимодействие между атомами в кристалле носит черты и притяжения, и отталкивания одновременно.
Хорошо бы придумать такой прием моделирования, который передавал бы конкуренцию сил притяжения и отталкивания, а это и значит — не омертвлял бы взаимодействие между атомами в кристалле. Именно это и сделали авторы модели БНЛ! В качестве строительных элементов модели они использовали не глиняные и не деревянные шарики, а маленькие, абсолютно одинаковые мыльные пузырьки, которые в один слой расположены на поверхности мыльной воды. Плавающий плот из пузырьков и есть модель кристалла. На площади 100 см2 можно расположить плот из более десяти тысяч пузырьков диаметром 1 мм. Это вполне макроскопический двумерный «кристалл», им можно моделировать многое, происходящее в реальном кристалле.
Осуществить модель БНЛ просто. Для этого нужно совсем элементарное оборудование: тарелка, игла от медицинского шприца, волейбольная камера и зажим, которым можно было бы с различной силой сжимать резиновую трубку-отросток волейбольной камеры. Тарелку надо почти доверху заполнить мыльной водой и добавить в нее несколько капель глицерина, для того чтобы пузырьки, которые мы будем выдувать на поверхности мыльной воды, получились устойчивыми. Надуть волейбольную камеру, зажать ее отросток и вставить в него иглу от шприца. Разумеется, тупым концом. Если поместить иглу под поверхность воды и немного ослабить зажим, из иглы одна за другой начнут выходить строго одинаковые порции воздуха, которые будут превращаться в столь же одинаковые мыльные пузырьки. В этом очерке — рассказ о взаимодействии между пузырьками, моделирующими атомы. О взаимодействии между атомами, составляющими кристалл, — в следующем.
Мыльные пузырьки не безучастны друг к другу. Два разобщенных мыльных пузыря на поверхности воды друг к другу притягиваются, а соприкоснувшись — отталкиваются друг от друга.
Попытаемся понять происхождение силы притяжения. Бесспорно следующее утверждение: сила появляется вследствие того, что сближение пузырьков сопровождается уменьшением связанной с ними избыточной энергии.
Поначалу хочется предположить, что эта энергия связана с поверхностью пузырей. Логика это желание легко подавит, подсказав, что поверхностная энергия не уменьшается при сближении пузырьков, а значит, их сближение окажется неоправданным. Есть, однако, иное слагаемое избыточной энергии совокупности двух пузырьков, которое оказывается зависящим от расстояния между ними. Дело в том, что каждый из пузырьков окружен областью, где уровень воды поднят над ее средним уровнем в сосуде. И следовательно, потенциальная энергия системы увеличена тем больше, чем большая масса воды и на бо?льшую высоту поднята. Степень поднятия убывает по мере удаления от центра пузырька. Если пузырьки удалены друг от друга на расстояние не очень большое, при котором области поднятия жидкости вокруг каждого из пузырьков частично перекрываются, их сближение оказывается выгодным, так как при этом уменьшается масса поднятой жидкости и, следовательно, связанная с ней избыточная потенциальная энергия. Приводимые рисунки качественно это поясняют.
После того, как пузырьки соприкоснутся, прижимающая их сила увеличит давление заключенного в них газа и, следовательно, возникнет сила отталкивания. Обе силы — и притяжения, и отталкивания — нами найдены.
Итак, мы познакомились с моделью БНЛ: двумерный плот из огромного количества одинаковых мыльных пузырьков, взаимодействие между которыми не заморожено и отражает притяжение и отталкивание между атомами в реальных кристаллах.
В модели БНЛ нет пространственной периодичности реальных структур, двумерный плот может иметь только структуру плотной упаковки, подобную паркету, выложенному из шестигранных плит. Это — недостатки модели. Им противостоит огромное достоинство — в ней моделируется взаимодействие между элементами, составляющими кристалл.
Не будем упрекать модель в ее слабостях — и о которых упомянули, и о которых умолчали. Будем ей благодарны за ее сильные стороны.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
МОДЕЛЬ: РЕЗИНОВАЯ ТРУБКА
МОДЕЛЬ: РЕЗИНОВАЯ ТРУБКА В истории науки подобных примеров множество: появляется новая идея, или обнаруживается новое явление природы, и при этом вдруг оказывается, что ранее, в связи с совсем иными задачами и ввиду совсем иных целей, ученые высказали соображения или
МОДЕЛЬ: ЛУННАЯ ДОРОЖКА
МОДЕЛЬ: ЛУННАЯ ДОРОЖКА В этом очерке лунная дорожка — та, которую все видели на поверхности воды, — лишь удобная модель. А рассказывать я намерен о строении поверхности кристалла, о том, как она рассеивает свет, как на ней образуется световая дорожка, подобная той, какую мы
Стандартная модель
Стандартная модель Сегодня поле Янга-Миллса открыло возможность всеобъемлющей теории материи. Мы настолько уверены в этой теории, что ласково называем ее Стандартной моделью.Стандартная модель способна объяснить все экспериментальные данные, касающиеся субатомных
Глава 4. СТАНДАРТНАЯ МОДЕЛЬ
Глава 4. СТАНДАРТНАЯ МОДЕЛЬ Если к моменту публикации книги БАК действительно уничтожит Землю, мы принесем свои искренние извинения и будем готовы возместить все затраты на эту книгу.21 марта 2008 года Уолтер Вагнер и Луис Санчо начали процесс в Федеральном суде США с
Протонно-нейтронная модель ядра
Протонно-нейтронная модель ядра 28 мая 1932 г. советский физик Д. Д. Иваненко опубликовал в «Nature» заметку, в которой высказал предположение, что нейтрон является наряду с протоном структурным элементом ядра. Он указал, что такая гипотеза решает проблему азотной катастрофы. В
Модель атома водорода
Модель атома водорода В 1913 году датский физик Нильс Бор (1885—1962) попытался нарисовать наглядную картину: как может быть построен атом из положительного ядра и электронов и при каких условиях он излучает свет. Физики называют такую наглядную картину моделью атома.Задача
4.9. Корпускулярная модель света
4.9. Корпускулярная модель света В описанных выше экспериментах и наблюдениях доказано, что движение объекта природы, называемого светом, как и всех остальных объектов природы, подчиняется классическому закону сложения скоростей. Изучены и другие его свойства, по которым
Модель горячей Вселенной
Модель горячей Вселенной Мы можем все высчитать и все просчитать, но Вселенная слушает себя, а не наши расчеты. А в ней все со всем связано, все на все влияет… Анхель де Куатье «Дневник сумасшедшего» До сих пор мы представляли модели Вселенной в большей мере с точки зрения
Стандартная модель
Стандартная модель К середине 1970-х все теоретические и опытные наработки СЛИЛИСЬ в единую теорию, названную стандартной моделью. В ее основе лежат математические выкладки, не являющиеся предметом настоящей книги, так что не следует забывать, что модель опирается на
Первая модель атома
Первая модель атома В заключение, мы можем сказать, что в первые годы XX в. был дан первый, может быть не полный, ответ на вопрос как излучается свет, а атомы с их электрическими зарядами были сочтены ответственными за это. Однако, как устроены атомы и, соответственно, каковы
Глава 4 Стандартная модель
Глава 4 Стандартная модель Почему Большой адронный коллайдер не уничтожил Землю?[56] 21 марта 2008 года Уолтер Вагнер и Луис Санчо начали процесс в Федеральном суде США с единственной простой целью – спасти человечество. Истцы утверждали, что в ближайшие несколько месяцев