Модель атома водорода

We use cookies. Read the Privacy and Cookie Policy

Модель атома водорода

В 1913 году датский физик Нильс Бор (1885—1962) попытался нарисовать наглядную картину: как может быть построен атом из положительного ядра и электронов и при каких условиях он излучает свет. Физики называют такую наглядную картину моделью атома.

Задача была сложная. Модель должна была учесть новый, необычный характер внутриатомных законов, о которых нам говорят опыты с атомами. Модель должна была объяснить: 1) почему атомы устойчивы, несмотря на то, что и в невозбужденном атоме электроды движутся, 2) закон разности частот, излучаемых атомами, 3) закон поглощения и излучения энергии только квантами (порциями).

Легче всего начать строить модель с атома водорода как наиболее простого. У него имеется всего лишь один электрон (см. стр. 90). Бор предположил, что этот электрон в полном соответствии с законами классической механики обращается вокруг ядра, как планета вокруг Солнца, двигаясь по определенному пути или, как говорят, по орбите. Но — и тут ученый вводит первое ограничение законов классической физики — орбита эта не произвольная, а вполне определенная. Ее радиус может быть точно вычислен. Это — орбита, «дозволенная» законами, действующими внутри атома. У электрона могут быть и другие орбиты, орбиты с большим радиусом, но тоже вполне определенные. На них электрон обращается, когда атомы водорода возбуждаются, захватывают энергию извне. Для удобства при дальнейших рассуждениях мы можем занумеровать эти орбиты, начиная с самой близкой к ядру: № 1, № 2, № 3 и т. д. (рис. 35).

Двигаясь по какой-либо «дозволенной» орбите, электрон вовсе не излучает. В этом отношении электрон не подчиняется законам классической физики. Это — новое ограничение, которое вводит Бор, чтобы объяснить наблюдающиеся закономерности. А если электрон не излучает, то и энергия его не убывает.

Рис. 35. Модель атома водорода. Стрелками показаны возможные переходы электрона при излучении

Однако есть разница в состоянии электрона, когда он находится на орбите № 1 и когда он движется на более удаленных орбитах. В первом случае состояние электрона очень устойчивое. Он может как угодно долго двигаться по орбите № 1, с ним ничего не произойдет. На более удаленных орбитах состояние электрона неустойчиво: он продержится на них в среднем около одной стомиллионной доли секунды, а затем перескочит на одну из орбит, более близких к ядру, и в конце концов на орбиту № 1.

Бор утверждает: атом испускает свет только во время перескоков электронов с орбит более удаленных на орбиты более близкие к ядру. Подсчитав энергии электрона на возможных для него орбитах, физики нашли, что при перескоке 2—1 (так мы будем обозначать перескок электрона с орбиты № 2 на орбиту № 1) атом водорода должен испускать излучение с частотой 24,7·1014 циклов, при перескоке 3—1 — с частотой 29,2·1014 циклов, при перескоке 4—1 — с частотой 30,9·1014 циклов, при перескоке 3—2 — с частотой 4,6·1014 циклов, при перескоке 4—2 — с частотой 6,2·1014 циклов, а при перескоке 4—3 — с частотой 1,6·1014 циклов. Таким образом, оказалось, что частота света, излучаемого парами раскаленного водорода, определяется тем, с какой орбиты на какую перескакивают электроны в его атомах.

Перескоками электродов можно объяснить и тот факт, что разности между отдельными частотами тоже являются частотами излучения атомов. Когда электрон обращается, скажем, по четвертой орбите, атом имеет один запас энергии. При перескоке электрона на вторую орбиту атом теряет часть энергии на излучение. Обозначим ее так: Э4,2. Но ту же энергию атом может потерять за два приема: при перескоках электрона с четвертой орбиты на третью и с третьей на вторую. Если обозначить энергии, потерянные при отдельных перескоках, через Э4,3 и Э3,2, то сказанное можно записать: Э4,2 = Э4,3 + Э3,2. Отсюда следует, что энергия, потерянная при перескоке 4—2, минус энергия, потерянная при перескоке 4—3, равна энергии, потерянной три перескоке 3—2. Но мы уже знаем, что энергия излучения тем больше, чем больше частоты излучения. Следовательно, если существует закон разности энергий излучений, то существует и закон разности частот излучений. Это мы и видим на примере частот, указанных в предыдущем абзаце. В самом деле: 6,2·1014 — 1,6·1014 = 4,6· 1014.

Следует заметить, что при каждом отдельном перескоке электрона атом испускает излучение только одной частоты. Если же в спектре водорода мы наблюдаем излучения не одной, а нескольких частот, то это потому, что мы всегда наблюдаем результат действия не одного, а множества атомов. В одних атомах электроны перескакивают со второй орбиты на первую, в других — с третьей на вторую, с третьей на первую и т. д.

Такое же объяснение можно дать и частотам спектров других элементов.

Такова была модель атома, нарисованная Бором. Она была только первым шагом в изучении строения атома, так как не объясняла, почему электроны ведут себя в атоме так странно, в противоречии с установленными ранее законами. Она только указывала (да и то лишь в простейших случаях), как они себя ведут, в силу каких-то новых, еще не открытых законов, верных для мира малых величин. Эти законы были открыты не сразу. Они нашли освещение в новой науке — квантовой механике.

Модель Бора отображает го, что происходит в простых атомах, лишь в грубом приближении. А для сложных атомов она вовсе непригодна. Но в случаях, когда большая точность не требуется, физики пользуются этой моделью ввиду ее простоты.

В этой модели сохранятся не геометрические образы (орбиты электронов), а главные физические черты, подтвержденные экспериментом; а именно: возбужденные атомы находятся в различных энергетических состояниях, вполне определенных для атомов данного элемента; это энергетическое состояние атом может изменять только скачком, переходя при этом на более низкий энергетический уровень и испуская квант света (фотон) определенной частоты (и, следовательно, определенной энергии), в зависимости от того, какой из возможных переходов он при данных условиях совершает.