Глава 39 КИНЕТИЧЕСКАЯ ТЕОРИЯ ГАЗОВ

We use cookies. Read the Privacy and Cookie Policy

Глава 39

КИНЕТИЧЕСКАЯ ТЕОРИЯ ГАЗОВ

§ 1. Свойства вещества

§ 2. Давление газа

§ 3. Сжимаемость излучения

§ 4. Температура и кинети­ческая энергия

§ 5. Закон идеального газа

§ 1. Свойства вещества

С этой главы мы начнем изучение новой темы, которая займет у нас довольно много времени. Мы начнем анализ свойств вещества с физической точки зрения. Зная, что вещество построено из большого числа атомов или каких-то других элементарных частей, взаимодейст­вующих электрически и подчиняющихся за­конам механики, мы постараемся понять, по­чему скопления атомов ведут себя именно так, а не иначе.

Нечего и говорить, что это трудная задача. И будет лучше, если мы с самого начала под­черкнем, что это чрезвычайно трудная задача и что решать ее нам придется совсем иными способами, чем раньше. Когда мы изучали механику и оптику, то могли начинать с точных формулировок некоторых законов, например законов Ньютона или формулы для поля, порождаемого ускоренным зарядом. Узнав их, мы сразу же могли объяснить бездну всяких явлений, а потом эти законы становились для нас прочной основой, опираясь на которую, мы совершенствовались и в механике, и в оптике. Мы можем продолжать изучение и даль­ше, но мы не обнаружим при этом какую-то но­вую физику, мы просто будем решать старые за­дачи более точными математическими методами.

Такой способ непригоден для изучения свойств вещества. Мы можем сказать о свойст­вах вещества лишь самые простые вещи. Пред­мет этот слишком сложен, чтобы можно было начать с самых основных законов. Мы по-прежнему будем пользоваться законами механики и электричества. Но законы эти слишком далеки от тех свойств, которые мы собираемся изучать. От законов Ньютона до свойств вещества очень много шагов и каждый шаг очень труден. Сейчас мы сделаем несколько таких шагов, но мне хочется предупредить вас, что если в предыдущих главах мы анализировали явления более или менее строго, то теперь с каждым шагом мы все больше будем терять строгость. Свойства вещества мы сможем понять лишь весьма приближенно.

Происходит это по нескольким причинам. Во-первых, наш анализ не может быть полным потому, что для этого нужно глубокое знание теории вероятностей; мы ведь не собираемся следить за движением каждого атома, а хотим узнать о среднем числе атомов, движущихся в том или ином направлении, и прикинуть, к чему приведет разница в этих средних. Таким образом, теория вероятностей органически входит в нашу тему, а в математике мы еще не очень сильны и многого от нас не потребуешь.

Вторая и более серьезная причина — чисто физическая. Поведение атомов подчиняется законам не классической, а квантовой механики, и пока мы не изучим квантовую механи­ку, нельзя серьезно говорить об изучении свойств вещества. Речь идет не просто о переходе от больших предметов к малень­ким, например от автомобилей к биллиардным шарам, разница между законами классической и квантовой механики гораздо глубже и существенней, и многие объяснения, если исходить из классической механики, будут просто неверными. Так что многих вещей мы пока никак не в состоянии понять, однако мы будем подчеркивать каждый раз, когда объяснения приведут нас в тупик, чтобы по крайней мере хоть предупредить, где он находится. Для этого и говорилось о квантовой механике в предыдущих главах: надо было понять, в каких случаях от­казывает механика классическая.

Почему же мы вообще изучаем свойства вещества? Не луч­ше ли было бы подождать с полгода или год, пока мы не поду­чим теорию вероятностей и квантовую механику, а потом уж и взяться за свойства вещества поосновательней? На это сле­дует ответить, что трудные вещи лучше изучать не спеша! Сначала мы — плохо ли, хорошо ли — познакомимся с об­щими идеями, подумаем, что может произойти в тех или иных обстоятельствах, а потом, когда лучше узнаем основные зако­ны, сформулируем все это поточнее.

Каждый, кто хочет всерьез анализировать свойства вещест­ва, должен сначала написать основные уравнения и попытаться решить их. Но каждого, кто начинал с этого, ждала неудача. Успех приходил лишь к тем, кто подходил к делу как физик: у этих людей сначала не было ничего, кроме грубой идеи, а затем они находили верное приближение, соображая, что в этой трудной ситуации можно считать большим, а что малым.

Задачи в этой области столь сложны, что даже не очень четкая и половинчатая идея оправдывает затраченное на нее время, и можно то и дело возвращаться к одной и той же задаче, приб­лижаясь понемногу к ее точному решению. Так мы и поступа­ем в нашем курсе.

И еще одна причина, по которой мы приступаем сейчас к изучению свойств веществ: нам уже приходилось встречать по­хожие идеи, например в химии. Некоторые из них известны нам со школы. Было бы интересно понять их с точки зрения физика.

Вот один из самых увлекательных примеров: известно, что равные объемы газов содержат при одинаковом давлении и температуре равное число молекул. Авогадро первым понял закон кратных отношений: из того, что в химической реакции между двумя газами объемы реагирующих газов относятся как целые числа, следует, что равные объемы содержат равное число атомов. Но почему в равных объемах содержится равное число атомов? Можно ли объяснить это, исходя из законов Ньютона? Для этого вам придется изучить эту главу. Мы еще будем впоследствии много говорить о давлениях, объемах, тем­пературе и теплоте.

Мы обнаружим при этом, что многие соотношения между свойствами вещества можно понять, ни слова не говоря об атомах. Например, если какое-нибудь тело сжать, оно нагре­ется; если тело нагревать, оно начнет расширяться. Связь между этими явлениями можно понять, не изучая строения тела. Занимающаяся такими вещами наука называется термо­динамикой. Конечно, глубокое понимание термодинамики воз­можно лишь после подробного изучения механизма, лежащего в основе того или иного процесса. Вот этим мы и займемся: мы примем с самого начала тот факт, что все вещества состоят из атомов, и постараемся понять свойства вещества и законы термодинамики.

Итак, начнем изучение свойств газов, исходя из законов Ньютона.

§ 2. Давление газа

Каждый знает, что газ оказывает давление. Но отчего? В этом надо разобраться как следует. Если бы наши уши были намного чувствительнее, чем они есть на самом деле, мы бы все время слышали страшный шум. Но природа позаботилась, чтобы наши уши не были столь восприимчивы, ведь они ока­зались бы для нас совершенно бесполезными — в них постоян­но стоял бы дикий гул, похожий на шум от стартующей ракеты. Дело в том, что барабанные перепонки наших ушей соприкаса­ются с воздухом, а воздух состоит из великого множества беспорядочно движущихся молекул, которые, ударяясь о бара­банные перепонки, создают такой шум, как будто сразу очень много барабанщиков отбивают беспорядочную дробь — бум, бум, бум... Однако мы не слышим этих звуков, потому что ато­мы очень малы, а уши наши недостаточно чувствительны. Бес­порядочные удары молекул должны были бы собственно про­давить барабанную перепонку, но ее непрестанно бомбардируют и с внутренней стороны, и в результате полная сила, действую­щая на перепонку, оказывается равной нулю. Если бы откачать воздух с одной стороны или хотя бы сделать разным его от­носительное количество с обеих сторон, то перепонка прода­вилась бы в ту или иную сторону, потому что бомбардировка с одной стороны оказалась бы гораздо сильнее. Мы иногда ис­пытываем это неприятное ощущение, когда очень быстро под­нимаемся в лифте или на самолете, а хуже всего, если мы еще при этом простужены (в этом случае распухшая слизистая оболочка закрывает каналы, соединяющие через носоглотку внутреннюю полость уха с внешним пространством, и таким образом оба давления не могут быстро уравняться.)

Чтобы проанализировать это явление количественно, пред­положим, что газ находится в ящике, одна стенка которого пред­ставляет собой поршень, способный перемещаться (фиг. 39.1).

Фиг. 39. 1. Атомы газа в ящике, в котором движется поршень без трения.

Найдем силу, с которой действуют на поршень находящиеся внутри ящика атомы. О поршень ударяются атомы, дви­жущиеся внутри объема V со всевозможными скоростями. Предположим, что вне ящика ничего нет — сплошной вакуум. Что же произойдет? Если предоставить поршень самому себе и не придерживать его, то с каждым ударом молекулы он будет приобретать небольшой импульс и постепенно будет вытолкнут совсем из ящика. Чтобы удержать его в ящике, придется при­ложить силу F. Какова должна быть эта сила? Говоря о силе, мы будем относить ее к единице площади: если площадь поршня равна А, то действующая на него сила будет пропорциональна площади. Определим давление как величину, равную отноше­нию приложенной к поршню силы к площади поршня:

P =F/A. (39.1)

Чтобы лучше понять, для чего это делается, подсчитаем бесконечно малую работу dW, которую надо затратить, чтобы протолкнуть поршень на бесконечно малое расстояние —dx (позднее это понадобится нам и для других целей); эта работа равна произведению силы на расстояние или, согласно (39.1), произведению давления, площади поршня и расстояния. Все это равно произведению давления на изменение объема, взя­того с обратным знаком:

dW=F(-dx)=-PAdx=-PdV. (39.2)

(Произведение площади А на изменение высоты dx равно из­менению объема.) Знак минус в этом выражении возникает из-за того, что при сжатии объем уменьшается; если принять это во внимание, то мы получим правильный результат: чтобы сжать газ, надо затратить работу.

Итак, с какой силой надо давить на поршень, чтобы уравно­весить удары молекул? При каждом ударе поршню сообщается некий импульс. В каждую секунду поршень получает опреде­ленный импульс и начинает двигаться. Чтобы предотвратить это, приложенная нами сила за секунду должна сообщить поршню точно такой же импульс. Таким образом, сила равна импульсу, сообщенному поршню за 1 сек. Можно об этом ска­зать и иначе: если предоставить поршень самому себе, то он за счет бомбардировки наберет скорость и с каждым ударом будет подталкиваться и двигаться с ускорением. Быстрота изменения скорости поршня, или ускорение, пропорциональна действующей силе. Таким образом, сила, которую мы опреде­лили как произведение давления на площадь, равна импульсу, сообщенному поршню за 1 сек всеми молекулами внутри ящика.

Подсчитать импульс, передаваемый поршню за 1 сек, легко; мы сделаем это в два этапа: сначала определим импульс, пере­данный одним атомом при столкновении с поршнем, а потом умножим эту величину на число соударений атомов с поршнем за 1 сек. Сила и будет произведением этих двух величин.

Займемся теперь этими величинами: предположим сна­чала, что поршень — это идеальный «отражатель» атомов. Если это не так, то вся наша теория рухнет — поршень нач­нет нагреваться и произойдет много всяких событий, предска­зать которые мы не в состоянии. Однако, когда снова устано­вится равновесие, в результате окажется, что каждое столк­новение будет эффективно упругим. В среднем энергия прихо­дящих и уходящих частиц не изменяется. Таким образом, предположим, что газ находится в равновесии и поршень, бу­дучи неподвижным, энергии не поглощает. В этом случае час­тица, подлетевшая к поршню с определенной скоростью, уле­тит от него с той же скоростью, причем масса частицы не из­менится.

Если v есть скорость атома, a vxсоставляющая скорости вдоль оси х, то импульс «к поршню» равен mvx, но раз частица «отражается», то импульс «от поршня» равен той же величине; значит, за одно соударение поршню сообщается импульс 2mvx.

Нужно теперь подсчитать число соударений атома за 1 сек; для этого можно взять любой промежуток времени dt, а потом разделить число соударений на dt. Много ли атомов попадает за это время в цель? Предположим, что в объеме V заключено N атомов, т. е. в каждом единичном объеме имеется n= N/V атомов. Теперь заметим, что за время t достигнут поршня не все частицы, движущиеся к поршню с заданной скоростью, а только те, которые оказались достаточно близко от него. Если частицы были очень далеко, то, хотя они и стремятся к поршню, к сроку они не успеют. Таким образом, за время t о поршень ударятся лишь те частицы, которые в начальный момент были не дальше чем на расстоянии vxt от него. Следо­вательно, число соударений за время t равно числу атомов, находящихся на расстоянии, не превышающем vxt, а поскольку площадь поршня равна А, то атомы, которые со временем по­падут в цель, занимают объем Avxt. А число атомов, попавших в цель, равно произведению объема на число атомов в единич­ном объеме nvxAt. Но нас, конечно, интересует не число соу­дарений за время t, а мы хотим знать число соударений за 1 сек, поэтому мы делим на t и получаем nvxA. (Время t может быть взято очень малым, для красоты можно писать dt и затем дифференцировать, но это все одно и то же.)

Итак, мы нашли, что сила равна

F=nvxA·2mvx. (39.3)

Обратите внимание, что если фиксировать плотность частиц, то сила оказывается пропорциональной площади! После этого давление найти очень просто:

P=-2nmv2x. (39.4)

Теперь надо исправить кое-какие неточности: прежде всего не все молекулы имеют одну и ту же скорость и не все они дви­жутся в одном направлении, так что нам приходится иметь дело с разными v2x! Каждая молекула, ударяясь о поршень, вносит свой вклад, поэтому надо взять среднее по всем молеку­лам. Сделав это, мы получим

P=nm<v2x>. (39.5)

А не забыли ли мы множитель 2? Нет, потому что лишь поло­вина атомов движется к поршню. Другие летят в проти­воположную сторону, а усредняя по v2x, мы усредняем как по положительным, так и по отрицательным составляющим vx.

Если просто усреднить по v2x, получится вдвое больший ре­зультат. Среднее v2x для положительных vxравно половине среднего v2x для всех vx.

Но атомы прыгают в ящике как хотят, и поэтому ясно, что x-направление» для них ничем не отличается от любого дру­гого; они движутся куда угодно: вправо — влево, вверх — вниз, взад — вперед. Поэтому <v2x> (средний квадрат скорости движения в одном направлении) равен среднему квадрату скорости в любом другом направлении

<v2x>=<v2y>=<v2z>. (39.6)

Используем это обстоятельство для небольшого математичес­кого трюка и обнаружим, что каждый из членов в (39.6) равен их сумме, деленной на три, а сумма — это квадрат величины скорости:

<v2x>=1/3<v2x+v2y+v2z>=<v2>/3. (39.7)

Это очень хорошо, потому что теперь уже не надо заботиться о координатных осях, и формулу для давления можно записать в виде

P=2/3n(mv2/2). (39.8)

Мы выделили множитель <mv2/2>, потому что это кинетичес­кая энергия движения молекулы как целого. Итак, мы нашли

PV=N2/3(mv2/2). (39.9)

Если мы будем знать скорость молекул, то очень быстро под­считаем давление.

В качестве простого примера можно описать такие газы, как гелий, пары ртути или калия при достаточно высокой тем­пературе или аргон; это одноатомные газы, для которых можно считать, что их атомы не имеют внутренних степеней свободы. Если нам попадется сложная молекула, то в ней могут быть всевозможные внутренние движения, всякого рода колебания и т. д. Мы предполагаем, что можно не принимать их в расчет; но можно ли это делать — вопрос сложный и мы к нему вер­немся; в действительности для нашего случая это окажется допустимым. Итак, предположим, что внутреннее движение атомов можно не рассматривать, и поэтому кинетическая энер­гия движения молекулы как целого восполняет всю энергию. Для одноатомного газа кинетическая энергия — действительно полная энергия. Будем обозначать полную энергию буквой U (иногда ее называют полной внутренней энергией, как-будто у газа может быть какая-то внешняя энергия), т. е. всю энергию всех молекул газа или любого другого объекта.

В случае одноатомного газа мы предположим, что полная энергия U равна произведению числа атомов на среднюю кине­тическую энергию каждого из них, потому что мы пренебрегли возможным возбуждением атомов или какими-то внутриатом­ными движениями. Тогда

PV=2/3U. (39.10)

Немного задержимся и ответим на такой вопрос: предпо­ложим, что мы медленно сжимаем газ; каким должно быть давление, чтобы сжать газ до заданного объема? Определить это легко, так как давление есть энергия, деленная на объем. Но когда газ сжимается, производится работа и поэтому энер­гия газа U возрастает. Процесс сжатия описывается неким диф­ференциальным уравнением. В начальный момент газ занимает определенный объем и обладает определенной энергией, поэ­тому нам известно и давление. Как только мы начинаем сжи­мать газ, энергия U возрастает, объем V уменьшается, а как изменяется давление, нам еще предстоит узнать.

Итак, нам предстоит решить дифференциальное уравнение. Сейчас мы это сделаем. Однако подчеркнем сначала, что, сжи­мая газ, мы предполагаем, что вся работа уходит на увеличение энергии атомов газа. Вы спросите: «А необходимо ли на этом останавливаться? Куда же еще она может уйти?» Но оказыва­ется, что затраченная работа может уйти и в другое место. Энергия может «вытечь» из ящика сквозь стенки: горячие (т. е. очень быстрые) атомы при бомбардировке будут нагревать стенки ящика и энергия выйдет наружу. Но мы предполагаем, что в нашем случае этого не происходит.

Сделаем небольшое обобщение, хотя и в этом случае мы бу­дем рассматривать лишь очень частный случай: запишем вместо PV=2/3U

PV = (g-1)U. (39.11)

Энергия U умножается на (g-1) для удобства, потому что в дальнейшем нам придется иметь дело с газами, для которых множитель перед U равен не 2/3, а какому-то другому числу. Чтобы можно было описывать и такие случаи, запишем этот множитель так, как его обозначают почти сто лет. Тогда в на­шем случае одноатомного газа, такого, как гелий, g=5/з, потому что 5/3-1=2/з.

Мы уже говорили, что совершаемая при сжатии газа работа равна -PdV. Сжатие, при котором тепло не поглощается и не выделяется, называется адиабатическим сжатием; это слово образовано из трех греческих слов: а(не)+dia(сквозь)+bainein(проходить). (Слово адиабатический употребляется в фи­зике в разных смыслах, так что не всегда можно понять, что между ними общего.) При адиабатическом сжатии вся затрачен­ная работа уходит на изменение внутренней энергии. Вот в этом и смысл, что нет потерь энергии и, значит, PdV=-dU. Но поскольку U=PV/g-1, то можно записать

dU=(PdV+VdP)/(g-1). (39.12)

Итак, PdV =-(PdV+VdP)/ (g-1) или, приводя подобные чле­ны, получаем gPdV=-VdP, или

gdv/v+dp/p=0, (39.1З)

Если мы примем, что g постоянна, а это так в случае одно­атомных газов, то уравнение интегрируется и мы получаем glnV+lnP=lnC, где С — постоянная интегрирования. Пе­реходя к степеням, мы получаем такой закон:

PVg=C (постоянная). (39.14)

Иначе говоря, если выполнены условия адиабатичности, т. е. потерь энергии нет и газ при сжатии нагревается, то в случае одноатомного газа произведение объема на давление в сте­пени 5/3 есть величина постоянная! Этот результат мы полу­чили чисто теоретически, но опыт показывает, что и в действи­тельности все происходит именно так.

§ 3. Сжимаемость излучения

Приведем еще один пример из кинетической теории газов; он не особенно интересует химиков, но очень важен для астро­номов. Внутри нагретого до высокой температуры ящика име­ется огромное число фотонов. (В качестве такого ящика надо взять очень горячую звезду. Солнце недостаточно горячо для этих целей. В звезде, правда, слишком много атомов, но если ее температура очень высока, то атомами можно пренебречь и считать, что внутренность звезды целиком заполнена фотонами.) Вспомним теперь, что фотон обладает импульсом р. (При изучении кинетической теории газов мы всегда будем ис­пытывать страшные неудобства: р — это давление, но р — еще и импульс; v — это объем, но это и скорость одновре­менно, а. Т — это и температура, и кинетическая энергия, и время, и момент силы; тут нужен глаз да глаз.) Сейчас буква р — это импульс, вектор. Поступим так же, как и в пре­дыдущем параграфе, за удары фотонов о стенку ответственна x-составляющая импульса, а удвоенная x-составляющая импульса — это импульс, полученный стенкой после каждого удара. Итак, вместо 2mvxпишем х, а при вычислении числа столкновений нужно по-прежнему подставлять vx; проделав все это, формулу (39.4) для давления мы уже записываем в виде

P=2npxvx. (39.15)

После усреднения мы получим произведение nна среднее зна­чение pxvx(вспомните, что мы говорили о множителе 2), а после того как на помощь будут призваны два других измерения, мы найдем

PV=N<p·v>/3. (39.16)

о

Эта формула почти совпадает с (39.9), потому что импульс ра­вен mv, просто это более общая формула, вот и все. Произведе­ние давления на объем равно произведению полного числа ато­мов на среднее значение 1/3(p·v).

Чему равно p·v для фотонов? Импульс и скорость направ­лены одинаково, а скорость равна скорости света, поэтому интересующее нас произведение — это импульс фотона, ум­ноженный на скорость света. Произведение импульса фотона на скорость света — это энергия фотона: Е=рс. Мы имеем дело с энергией каждого фотона и должны умножить среднюю энергию фотона на число фотонов. Получается одна треть пол­ной энергии:

PV=Ui3 (в случае фотонного газа). (39.17)

Для фотонов, следовательно, поскольку впереди стоит 1/3, множитель (g-1) в (39.11) равен l/4, т. е. g= 4/3, значит, излучение в ящике подчиняется закону

РV4/3=С. (39.18)

Таким образом, мы знаем сжимаемость излучения! Можно ис­пользовать эту формулу при анализе вклада излучения в дав­ление внутри звезды, подсчитать давление и оценить, как оно изменяется при сжатии звезды. Просто удивительно, как много мы уже умеем!

§ 4. Температура и кинетическая энергия

До сих пор мы не имели дела с температурой; мы созна­тельно избегали разговоров на эту тему. Мы знаем, что если сжимать газ, энергия молекул возрастает, и мы обычно гово­рим, что газ при этом нагревается. Теперь надо понять, какое это имеет отношение к температуре. Нам известно, что такое адиабатическое сжатие, а как поставить опыт, чтобы можно было сказать, что он был проведен при постоянной температуре? Если взять два одинаковых ящика с газом, приставить их один к другому и подержать так довольно долго, то даже если вна­чале эти ящики обладали тем, что мы назвали различной тем­пературой, то в конце концов температуры их станут одинако­выми. Что это означает? Только то, что ящики достигли того состояния, которого они в конце концов достигли бы, если бы их надолго предоставили самим себе! Состояние, в котором температуры двух тел равны — это как раз то окончательное состояние, которого достигают после длительного соприкосно­вения друг с другом.

Давайте посмотрим, что случится, если ящик разделен на две части движущимся поршнем и каждое отделение заполне­но разным газом, как это показано на фиг. 39.2 (для простоты предположим, что имеются два одноатомных газа, скажем, гелий и неон).

Фиг.39. 2. Атомы двух разных одноатомных газов, разделенных подвижным поршнем.

В отделении 1 атомы массы m1движутся со скоростью v1, а в единице объема их насчитывается n1 штук, в отделении 2 эти числа соответственно равны m2, v2 и n2. При каких же условиях достигается равновесие?

Разумеется, бомбардировка слева заставляет поршень дви­гаться вправо и сжимает газ во втором отделении, затем то же самое происходит справа и поршень ходит так взад и вперед, пока давление с обеих сторон не сравняется, и тогда поршень остановится. Мы можем устроить так, чтобы давление с обеих сторон было одинаковым, для этого нужно, чтобы внутренние энергии, приходящиеся на единичный объем, были одинако­выми или чтобы произведения числа частиц nв единице объе­ма на среднюю кинетическую энергию было одинаковым в обо­их отделениях. Сейчас мы попытаемся доказать, что при рав­новесии должны быть одинаковы и отдельные сомножители. Пока мы знаем только, что равны между собой произведения чисел частиц в единичных объемах на средние кинетические энергии

это следует из условия равенства давлений и из (39.8). Нам пред­стоит установить, что по мере постепенного приближения к равновесию, когда температуры газов сравниваются, выполня­ется не только это условие, а происходит и еще кое-что.

Чтобы было яснее, предположим, что нужное давление слева в ящике достигается за счет очень большой плотности, но малых скоростей. При больших nи малых v можно получить то же самое давление, что и при малых nи больших v. Атомы, если они плотно упакованы, могут двигаться медленно, или атомов может быть совсем немного, но ударяют они о поршень с боль­шей силой. Установится ли равновесие навсегда? Сначала кажется, что поршень никуда не сдвинется и так будет всегда, но если продумать все еще раз, то станет ясно, что мы упустили одну очень важную вещь. Дело в том, что давление на поршень вовсе не равномерное, поршень-то раскачивается точно так же, как барабанная перепонка, о которой мы говорили в начале главы, ведь каждый новый удар не похож на предыдущий. Получается не постоянное равномерное давление, а скорее нечто вроде барабанной дроби — давление непрерывно меня­ется, и наш поршень как бы постоянно дрожит. Предположим, что атомы правого отделения ударяют о поршень более или менее равномерно, а слева атомов меньше, и удары их редки, но очень энергичны. Тогда поршень то и дело будет получать очень сильный импульс слева и отходить вправо, в сторону более медленных атомов, причем скорость этих атомов будет возрастать. (При столкновении с поршнем каждый атом приоб­ретает или теряет энергию в зависимости от того, в какую сто­рону движется поршень в момент столкновения.) После не­скольких столкновений поршень качнется, потом еще, еще и еще..., газ в правом отделении будет время от времени встря­хиваться, а это приведет к увеличению энергии его атомов, и движение их ускорится. Так будет продолжаться до тех пор, пока не уравновесятся качания поршня. А равновесие уста­новится тогда, когда скорость поршня станет такой, что он будет отбирать у атомов энергию так же быстро, как и отдавать. Итак, поршень движется с какой-то средней скоростью, и нам предстоит найти ее. Если нам это удастся, мы подойдем к ре­шению задачи поближе, потому что атомы должны подогнать свои скорости так, чтобы каждый газ получал через поршень ровно столько энергии, сколько теряет.

Очень трудно рассчитать движение поршня во всех деталях; хотя все это очень легко понять, оказывается, что проанализи­ровать это несколько труднее. Прежде чем приступить к такому анализу, решим другую задачу: пусть ящик заполнен молеку­лами двух сортов с массами m1и m2, скоростями v1и v2 и т. д.; теперь молекулы смогут познакомиться поближе. Если сначала все молекулы № 2 покоятся, то долго это продолжаться не может, потому что о них будут ударять молекулы № 1 и сооб­щать им какую-то скорость. Если молекулы № 2 могут двигать­ся значительно быстрее, чем молекулы № 1, то все равно рано или поздно им придется отдать часть своей энергии более медленным молекулам. Таким образом, если ящик заполнен смесью двух газов, то проблема состоит в определении относительной скорости молекул обоих сортов.

Это тоже очень трудная задача, но мы все-таки решим ее. Сначала нам придется решить «подзадачу» (опять это один из тех случаев, когда, независимо от того как решается задача, окончательный результат запоминается легко, а вывод требует большого искусства). Предположим, что перед нами две стал­кивающиеся молекулы, обладающие разными массами; во из­бежание осложнений мы наблюдаем за столкновением из сис­темы их центра масс (ц. м.), откуда легче уследить за ударом молекул. По законам столкновений, выведенным из законов сохранения импульса и энергии, после столкновения молекулы могут двигаться только так, что каждая сохраняет величину своей первоначальной скорости, и изменить они могут только направление движения. Типичное столкновение выглядит так, как его изобразили на фиг. 39.3.

Фиг. 39. 3. Столкновение двух неодинаковых молекул, если смот­реть из системы центра масс.

Предположим на минутку, что мы наблюдаем столкновения, системы центра масс которых покоятся. Кроме того, надо предположить, что все молекулы движутся горизонтально. Конечно, после первого же столкнове­ния часть молекул будет двигаться уже под каким-то углом к исходному направлению. Иначе говоря, если вначале все молекулы двигались горизонтально, то спустя некоторое вре­мя мы обнаружим уже вертикально движущиеся молекулы. После ряда других столкновений они снова изменят направле­ние и повернутся еще на какой-то угол. Таким образом, если кому-нибудь и удастся сначала навести порядок среди моле­кул, то все равно они очень скоро разбредутся по разным на­правлениям и с каждым разом будут все больше и больше распыляться. К чему же это в конце концов приведет? Ответ: Любая пара молекул будет двигаться в произвольно выбранном направлении столь же охотно, как и в любом другом. После этого дальнейшие столкновения уже не смогут изменить распределе­ния молекул.

Что имеется в виду, когда говорят о равновероятном дви­жении в любом направлении? Конечно, нельзя говорить о вероятности движения вдоль заданной прямой — прямая слишком тонка, чтобы к ней можно было относить вероятность, а следует взять единицу «чего-нибудь». Идея заключается в том, что через заданный участок сферы с центром в точке столк­новения проходит столько же молекул, сколько через любой другой участок сферы. В результате столкновений молекулы распределяются по направлениям так, что любым двум равным по площади участкам сферы будут соответствовать равные ве­роятности (т. е. одинаковое число прошедших через эти участки молекул).

Между прочим, если мы будем сравнивать первоначальное направление и направление, образующее с ним какой-то угол 0, то интересно, что элементарная площадь на сфере единичного радиуса равна произведению 2p на sinqdq, или, что то же самое, на дифференциал cosq. Это означает, что косинус угла 9 между двумя направлениями с равной вероятностью принимает лю­бое значение между -1 и +1.

Теперь нам надо вспомнить о том, что имеется на самом деле; ведь у нас нет столкновений в системе центра масс, а сталки­ваются два атома с произвольными векторными скоростями v1 и v2. Что происходит с ними? Мы поступим так: снова перей­дем к системе центра масс, только теперь она движется с «ус­редненной по массам» скоростью vц.м.=(m1v1+m2v2)/(m1+m2). Если следить за столкновением из системы центра масс, то оно будет выглядеть так, как это изображено на фиг. 39.3, только надо подумать об относительной скорости столкновения w. Относительная скорость равна v1-v2. Дело, следовательно, обстоит так: движется система центра масс, а в системе центра масс молекулы сближаются с относительной скоростью w; столк­нувшись, они движутся по новым направлениям. Пока все это происходит, центр масс все время движется с одной и той же скоростью без изменений.

Ну и что же получится в конце концов? Из предыдущих рассуждений делаем следующий вывод: при равновесии все направления, w равновероятны относительно направления дви­жения центра масс. Это означает, что в конце концов не будет никакой корреляции между направлением относительной ско­рости и движением центра масс. Если бы даже такая корреля­ция существовала вначале, то столкновения ее бы разрушили и она в конце концов исчезла бы полностью. Поэтому сред­нее значение косинуса угла между w и vц.м. равно нулю. Это значит, что

<w·vц.м.>=0. (39.19)

Скалярное произведение w·vц.м. легко выразить через v1 и v2:

Займемся сначала v1·v2; чему равно среднее v1·v2? Иначе го­воря, чему равно среднее проекции скорости одной молекулы на направление скорости другой молекулы? Ясно, что вероят­ности движения молекулы как в одну сторону, так и в проти­воположную одинаковы. Среднее значение скорости v2 в любом направлении равно нулю. Поэтому и в направлении v1 среднее значение v2 тоже равно нулю. Итак, среднее значение v1·v2 равно нулю! Следовательно, мы пришли к выводу, что среднее т1v21должно быть равно т2v22. Это значит, что средние кинети­ческие энергии обеих молекул должны быть равны:

1/2m1v21=1/2m2v22. (39.21)

Если газ состоит из атомов двух сортов, то можно показать (и мы даже считаем, что нам удалось это сделать), что средние кинетические энергии атомов каждого сорта равны, когда газ находится в состоянии равновесия. Это означает, что тяжелые атомы движутся медленнее, чем легкие; это легко проверить, поставив эксперимент с «атомами» различных масс в воздушном желобе.

Теперь сделаем следующий шаг и покажем, что если в ящи­ке имеются два газа, разделенные перегородкой, то по мере достижения равновесия средние кинетические энергии атомов разных газов будут одинаковы, хотя атомы и заключены в разные ящики. Рассуждение можно построить по-разному. Например, можно представить, что в перегородке проделана маленькая дырочка (фиг. 39.4), так что молекулы одного газа проходят сквозь нее, а молекулы второго слишком велики и не пролезают.

Фиг. 39. 4. Два газа в ящике, разделенном полупроницаемой пере­городкой.

Когда установится равновесие, то в том отделе­нии, где находится смесь газов, средние кинетические энергии молекул каждого сорта сравняются. Но ведь в числе проник­ших сквозь дырочку молекул есть и такие, которые не потеря­ли при этом энергии, поэтому средняя кинетическая энергия молекул чистого газа должна быть равна средней кинетичес­кой энергии молекул смеси. Это не очень удовлетворительное доказательство, потому что ведь могло и не быть такой дырочки, сквозь которую пройдут молекулы одного газа и не смогут прой­ти молекулы другого.

Давайте вернемся к задаче о поршне. Можно показать, что кинетическая энергия поршня тоже должна быть равна 1/2m2v22. Фактически кинетическая энергия поршня связана только с его горизонтальным движением. Пренебрегая возмож­ным движением поршня вверх и вниз, мы найдем, что гори­зонтальному движению соответствует кинетическая энергия 1/2m2v22x. Но точно так же, исходя из равновесия на другой сто­роне, можно показать, что кинетическая энергия поршня долж­на быть равна 1/2т1v21x. Хотя мы повторяем предыдущее рас­суждение, возникают некоторые дополнительные трудности в связи с тем, что в результате столкновений средние кинети­ческие энергии поршня и молекулы газа сравниваются, потому что поршень находится не внутри газа, а смещен в одну сто­рону.

Если вас не удовлетворит и это доказательство, то можно придумать искусственный пример, когда равновесие обеспечи­вается устройством, по которому молекулы каждого газа бьют с обеих сторон. Предположим, что сквозь поршень проходит короткий стержень, на концах которого насажено по шару. Стержень может двигаться сквозь поршень без трения. По каж­дому из шаров со всех сторон бьют молекулы одного сорта. Пусть масса нашего устройства равна m, а массы молекул газа, как и раньше, равны m1и m2. В результате столкновений с молекулами первого сорта кинетическая энергия тела массы mравна среднему значению 1/2 mtv21(мы уже доказали это). Точно так же, столкновения с молекулами второго сорта зас­тавляют тело иметь кинетическую энергию, равную среднему значению 1/2mzv22. Если газы находятся в тепловом равнове­сии, то кинетические энергии обоих шаров должны быть рав­ны. Таким образом, результат, доказанный для случая смеси газов, можно немедленно обобщить на случай двух разных газов при одинаковой температуре.

Итак, если два газа имеют одинаковую температуру, то средние кинетические энергии молекул этих газов в системе центра масс равны.

Средняя кинетическая энергия молекул — это свойство только «температуры». А будучи свойством «температуры», а не газа, она может служить определением температуры. Средняя кинетическая энергия молекулы, таким образом, есть некото­рая функция температуры. Но кто нам подскажет, по какой шкале отсчитывать температуру? Мы можем сами определить шкалу температуры так, что средняя энергия будет пропор­циональна температуре. Лучше всего для этого назвать «тем­пературой» саму среднюю энергию. Это была бы самая простая функция, но, к несчастью, эту шкалу уже выбрали иначе и вместо того, чтобы назвать энергию молекулы просто «темпе­ратурой», используют постоянный множитель, связывающий среднюю энергию молекулы и градус абсолютной температу­ры, или градус Кельвина. Этот множитель: k=1,38·10-23 дж на каждый градус Кельвина. Таким образом, если абсо­лютная температура газа равна Т, то средняя кинетическая энергия молекулы равна 3/2kT (множитель 3/2 введен только для удобства, благодаря чему исчезнут множители в других формулах).

Заметим, что кинетическая энергия, связанная с состав­ляющей движения в любом направлении, равна только 1/2kТ. Три независимых направления движения доводят ее до 3/2kT.

§ 5. Закон идеального газа

Теперь можно подставить наше определение температуры в уравнение (39.9) и найти закон зависимости давления газа от температуры: произведение давления на объем равно про­изведению полного числа атомов на универсальную постоян­ную k и температуру:

PV=NkT. (39.22)

Следовательно, при одинаковых температуре, давлении и объеме число атомов строго определено — это тоже универ­сальная постоянная! Таким образом, из законов Ньютона следует, что в равных объемах любых газов при одинаковых температуре и давлении содержится равное число молекул. Вот какой неожиданный вывод!

На практике, когда имеешь дело с молекулами, приходится оперировать большими числами, поэтому химики произвольно выбрали число, очень большое число, и придумали ему специ­альное название. Они назвали его моль. Моль — это очень искусственное число. Почему химики не приняли за единицу 1024, чтобы вышло круглое число,— это вопрос исторический.

Случилось так, что они для удобства выбрали стандарт­ное число N0=6,02·1023 объектов и назвали это число молем объектов. После этого, вместо того чтобы измерять число молекул в штуках, они измеряют их в молях. Можно написать число молей (выражая их через N0) и умножить его на число атомов в моле, потом умножить на kT, а затем, если захотим, выделить произведение числа атомов в моле на k, тогда получит­ся молярное значение k; для этой величины выделим особую букву R. Молярное значение k равно 8,317 дж: R=N0k=8,317дж/молъ·°К-1. Таким образом мы нашли газовый закон, выраженный в виде произведения числа молей (его обозначают буквой N) на RT, или в виде произведения числа атомов на kT:

PV=NRT. (39.23)

Смысл тот же самый, только единицы измерения разные. В качестве единицы мы используем 1, а химики используют 6·1023!

Сделаем еще одно замечание по поводу газового закона; оно касается вещей более сложных, чем одноатомные молекулы. Пока мы имели дело только с движением одноатомного газа в центре масс. А что если при этом учесть действие сил? Рас­смотрим сначала случай, когда поршень удерживается гори­зонтально расположенной пружинкой, на которую действует сила. Взаимная встряска атомов и поршня в каждый данный момент, конечно, не зависит от положения поршня. Условия равновесия остаются прежними. Независимо от того, где на­ходится поршень, от него требуется только, чтобы скорость его движения была такой, чтобы он получал от молекул столь­ко же энергии, сколько отдавал им. Наличие пружинки не меняет дела. Скорость, с которой движется поршень, в среднем та же. Таким образом, наша теорема о том, что средняя кине­тическая энергия в одном направлении равна 1/2kT, справед­лива независимо от того, есть силы или их нет.

Рассмотрим, например, двухатомную молекулу, состав­ленную из атомов с массами mАи mB. Нам удалось доказать, что движение в центре масс части А и части В таково, что <1/2mAv2A>=<1/2mBv2B> = 3/2kT. Но как это может быть, если от­дельные части связаны друг с другом? Хотя они и связаны меж­ду собой, но обмен энергией при взаимных вращениях, изме­нении расстояния и соударениях с другими молекулами за­висит только от того, как быстро они движутся. Только этим определяется обмен энергией при соударениях. Сила в каждый отдельный момент не имеет никакого значения. Следовательно, даже если между отдельными частями молекулы действуют силы, верен тот же принцип.

Докажем, наконец, что газовый закон справедлив и в том случае, когда внутреннее движение не учитывается. До сих пор нам не надо было включать внутреннее движение. Мы просто рассматривали одноатомный газ. Но теперь мы покажем, что скорость центра масс любого объекта, который можно рассматривать как тело массы М, равна

1/2Mv2ц..м.=3/2kT. (39.24)

Иначе говоря, можно рассматривать как отдельные части, так и всю молекулу в целом! Посмотрим, почему это можно делать: масса двухатомной молекулы равна М=mА+mB, а скорость центра масс равна vц.м. =(mAvA+mBvB)/M. Нам нужно теперь определить <v2ц.м.>. Если возвести в квадрат vц.м., то получится

Умножив это на 1I2M и усреднив, получим

[Мы воспользовались тем, что (mA+mB)/М=1.] А чему равно <vA·vB>? (Хорошо бы, чтобы это было равно нулю!) Чтобы найти это среднее, используем наше предположение, что относитель­ная скорость w=vA-vb не предпочитает какое-то одно опреде­ленное направление остальным, т. е. средняя составляющая вдоль любого направления равна нулю. Мы предполагаем, следовательно, что

<w·vц.м.>=0.

Но что такое w·vц.м.? Это скалярное произведение, равное

Далее, поскольку <,mAv2A>= <mBv2B>, то первый и последний члены взаимно уничтожаются, и мы получаем

(mB-mA)<vA·vB>=0.

Итак, если mА№mB, то <va·vв>=0, а это означает, что жест­кому движению всей молекулы, рассматриваемой как одна частица массы М, соответствует средняя кинетическая энергия, равная 3/2kT.

Одновременно мы доказали, что средняя кинетическая энергия внутреннего движения двухатомной молекулы, если не учитывать движения центра масс, равна 3/2kT! Ведь полная кинетическая энергия отдельных частей молекулы равна 1/2mAv2A+1/2mBv2B, а среднее ее значение — это 3/2kT+3/2kT, или 3kT. Кинетическая энергия движения центра масс равна 3/2kT, так что средняя кинетическая энергия вращательного и колебательного движений двух атомов внутри молекулы — это разность этих величин, 3/zkT.

Теорема о средней энергии центра масс — это весьма общая теорема: для каждого объекта, рассматриваемого как единое целое, независимо от того, действуют на этот объект силы или нет, средняя кинетическая энергия каждого независимого движения равна 1l2kT. Эти «независимые направления дви­жения» иногда называют степенями свободы системы. Число степеней свободы молекулы, составленной из rатомов, равно 3r, потому что для определения положения каждого атома нужны три координаты. Полную кинетическую энергию мо­лекулы можно представить либо как сумму кинетических энер­гий отдельных атомов, либо как сумму кинетической энергии движения Центра масс и кинетической энергии внутренних движений. Последнюю иногда можно представить как сумму кинетической энергии вращений и кинетической энергии ко­лебаний, но это можно сделать только приближенно. Наша тео­рема, если применить ее к r-атомной молекуле, гласит, что средняя кинетическая энергия молекулы равна 3/2rkT дж, из которых 3/2kT — кинетическая энергия движения молекулы как целого, а остаток 3/2(r-1)kT — это внутренняя кинети­ческая энергия вращений и колебаний.

* Стоградусная шкала— это шкала Кельвина, в которой за нуль при­нята температура 273,16°, так что T=273,16+стоградусная температура.

** То, что химики называют молекулярным весом, есть не что иное, как масса моля молекул в граммах. Моль определяется так, что масса моля атомов изотопа углерода 12 (ядра которого состоят из 6 протонов и 6 нейтронов) равна в точности 12 г.

* Этот аргумент, который приводил еще Максвелл, несколько ко­варен. Хотя окончательный вывод и справедлив, но он не следует непо­средственно из соображений симметрии, которыми мы пользовались раньше. Ведь перейдя к движущейся через газ системе отсчета, мы можем обнаружить искаженное распределение скоростей. Мы не смогли найти простого доказательства этого результата.