Глава 43 ДИФФУЗИЯ

Глава 43

ДИФФУЗИЯ

§ 1. Столкновения молекул

§ 2. Средняя длина свободного пробега

§ 3. Скорость дрейфа

§ 4. Ионная проводимость

§ 5. Молекулярная диффузия

§ 6. Теплопроводность

§ 1. Столкновения молекул

До сих пор мы изучали движение молекул только при тепловом равновесии. А теперь нужно обсудить, как движутся молекулы газа, когда он близок к равновесию, но еще не достиг его полностью. Если газ слишком неравно­весен, все становится чрезвычайно сложным и разобраться в том, что там происходит, очень трудно, а вот если отклонения от рав­новесия незначительны, то задачи решаются легко. Однако, чтобы рассмотреть, что проис­ходит в таком газе, надо снова вернуться к кинетической теории. Статистическая меха­ника и термодинамика пригодны, когда имеется равновесие, а чтобы проанализировать то, что происходит при отклонении от равновесия, приходится, так сказать, перебирать атом за атомом.

В качестве простого примера неравновесной задачи рассмотрим диффузию ионов в газе. Предположим, что в газе содержится немного ионов — электрически заряженных молекул. Если к газу приложить электрическое поле, то на каждый ион будет действовать сила, отличающаяся от сил, действующих на нейт­ральные молекулы. Если бы других молекул не было, то ион двигался бы с постоянным ускорением, пока не наткнулся бы на стенку ящика. Но наличие других молекул меняет дело: скорость иона возрастает лишь до тех пор, пока он не ударится о молекулу и не по­теряет своего импульса. После этого он снова начинает ускоряться, но вновь теряет импульс. В результате ион вынужден двигаться по ло­маному пути, хотя все же в конце концов он движется в направлении электрического поля.

Мы замечаем, таким образом, что ион «дрейфует» со средней скоростью, пропорциональной электрическому полю; чем силь­нее поле, тем быстрее движется ион. Конечно, пока существует поле и пока ион продолжает двигаться, не может быть и речи о тепловом равновесии. Система стремится прийти к равно­весию, но для этого нужно, чтобы все ионы приклеились к стенке ящика. С помощью кинетической теории возможно вычислить скорость дрейфа ионов.

Наших математических познаний еще недостаточно, чтобы точно вычислить все, что произойдет, но мы можем получить приближенное решение, которое правильно передаст все суще­ственные особенности явления. Мы можем определить зави­симость эффекта от давления, температуры и т. п., но не в наших силах вычислить точно все коэффициенты, стоящие перед этими сомножителями. Поэтому не будем мучить себя заботой о точных значениях таких коэффициентов. Получить их можно только после очень тонкого математического анализа.

Прежде чем рассуждать о том, что происходит в отсутствие равновесия, посмотрим повнимательнее на равновесный газ. Необходимо, например, знать среднее время между двумя последовательными столкновениями молекулы.

Каждая молекула непрерывно сталкивается с другими молекулами. Происходят все эти столкновения, конечно, случайно. Если выбрать какую-нибудь молекулу, то за доста­точно долгое время Т она получит определенное число N ударов. Если увеличить промежуток времени вдвое, то и число ударов возрастет вдвое. Таким образом, число столкно­вений пропорционально времени Т. Это можно выразить сле­дующим образом:

N=T/t (43.1)

Мы записали постоянную пропорциональности в виде 1/t, где t имеет размерность времени. Постоянная t — это среднее время между столкновениями. Предположим для примера, что за час происходит 60 столкновений; тогда t равно одной минуте. Мы будем говорить, что t (одна минута) это среднее время между столкновениями.

Часто нам придется искать ответ на такой вопрос: Какова вероятность того, что молекула испытает столкновение в те­чение малого промежутка времени dt? Мы догадываемся, что эта вероятность равна dt/t. Попытаемся, однако, привести более убедительные аргументы. Предположим, что в нашем распоряжении имеется очень большое число N молекул. Сколько молекул из этого числа столкнется в течение интервала вре­мени dt? Если молекулы находятся в равновесном состоянии, то ничего не будет меняться в среднем со временем. Таким образом, N молекул, пробывших в ящике в течение интервала dt, испытают столько же соударений, сколько одна моле­кула за время Ndt. Число соударений одной молекулы за большое время Ndt известно — это Ndt/t. А если число соударений между N молекулами за время dt равно Ndtlt, то вероятность удара для одной молекулы равна 1/N части этой величины, или (1/N)(Ndt/t)=dt/t (как мы и говорили с самого начала). Таким образом, относительное число молекул, сталкивающихся за время dt, грубо говоря, равно dt/t. Если, например, t равно одной минуте, то за секунду столкнется 1/60 часть всех молекул.

Это означает, конечно, что если в данный момент 1/60 часть молекул подошла достаточно близко к тем, с кем они должны столкнуться, то их столкновение произойдет в течение сле­дующей минуты.

Когда мы говорим, что t (среднее время между столкнове­ниями) равно одной минуте, то мы вовсе не считаем, что все столкновения разделены в точности минутными интервалами. Частица, столкнувшись, совсем не выжидает потом еще минуту, чтобы нанести следующий удар. Промежутки между последо­вательными столкновениями весьма различны. В дальнейшем, правда, нам это не понадобится, но можно задать такой во­прос: А чему все же равно время между столкновениями? Мы уже знаем, что в приведенном выше примере среднее время равно одной минуте, но нам, быть может, нужно знать, какова вероятность того, что молекула не столкнется ни с кем в течение двух минут?

Ответим на более общий вопрос: Какова вероятность того, что молекула не испытает ни одного столкновения за время t? Начнем в какой-то произвольный момент времени, который мы назовем t=0, следить за определенной молекулой. Какова вероятность того, что до момента встречи ее с другой молекулой пройдет время t? Чтобы вычислить вероятность, посмотрим, что случится со всеми N0молекулами, находящимися в ящике. Пока мы ждем в течение времени t, некоторые молекулы ис­пытают столкновения. Пусть N(t) — число молекул, не испы­тавших столкновений за время t. Мы можем определить N(t), ибо нам известно, как это число меняется со временем. Это число N(t), естественно, меньше общего числа молекул N0. Если мы знаем, что за время t избежать столкновений удалось N(t) молекулам, то N(t+dt) (число молекул, которым удалось сделать это за время t+dt) меньше N(t) на число молекул, все-таки столкнувшихся за время dt. Мы уже раньше научи­лись определять число молекул, которым не удалось избежать столкновений за время dt, с помощью среднего времени т: dN=N(t)dt/t. Мы получаем уравнение

N(t+dt)=N(t)-N(t)dt/t. (43.2)

Величину, стоящую в левой части уравнения, N(t+dt), можно в согласии с общими правилами дифференциального исчис­ления записать в виде N(t)+(dN/dt)(dt). Сделав эту подстановку, мы приведем уравнение (43.2) к виду

Число молекул, выбывших из игры за промежуток dt, пропор­ционально числу наличных молекул и обратно пропорционально среднему времени жизни t. Уравнение (43.3) легко проинтег­рировать, если переписать его в виде

Поскольку в каждой части стоит полный дифференциал, то интеграл уравнения таков:

lnN(t)=-t/t+ постоянная, (43.5)

или, что то же самое,

N(t)=(постоянная)е-t/t. (43.6)

Мы знаем, что постоянная должна быть равна N0— полному числу молекул, потому что в начальный момент t=0 все моле­кулы ждут «следующего» удара. Мы можем записать наш результат в виде

N(t)=N0e-t/t. (43.7)

Если мы хотим определить вероятность P(t) того, что молекула не испытает столкновений, нужно величину N(t) поделить на N0; тогда получим

P(t)=е-t/t. (43.8)

Вот наш результат: вероятность того, что какая-то молекула сможет прожить время t, не столкнувшись, равна ехр(-t/t), где t — среднее время между столкновениями. Вероятность эта начинается с 1 (очевидности) при t=0 и уменьшается по мере того, как t становится все больше и больше. Вероят­ность того, что молекула избежит столкновений за время t, равна е-1=0,37... Шансов выдержать дольше, чем среднее время между столкновениями, меньше половины. В этом нет ничего странного, потому что существует достаточно много молекул, которые избегают столкновений значительно дольше среднего времени между столкновениями, так что среднее время между столкновениями по-прежнему равно t,

Первоначально мы определили t как среднее время между столкновениями. Сформулированный в виде уравнения (43.7) результат говорит нам, что среднее время, отсчитываемое от произвольно взятого момента до следующего столкновения, также равно т. Этот несколько удивительный факт можно продемонстрировать следующим образом. Число молекул, которые испытают их следующее столкновение в промежутке dt, отсчитанного от времени t после произвольно взятого началь­ного времени, равно N(t)dt/t. Их «промежуток времени до сле­дующего столкновения» равен, конечно, t. «Среднее время до следующего столкновения» получается обычным образом:

Среднее время до следующего столкновения=

Используя полученное из (43.7) число N(t) и вычисляя интеграл, найдем, что tэто среднее время, отсчитанное от любого момента до следующего столкновения.

§ 2. Средняя длина свободного пробега

Есть еще возможность описать столкновения молекул, не вводя для этого времени между столкновениями. Можно оп­ределить, далеко ли успеет уйти частица между столкновениями. Если мы знаем, что среднее время между столкновениями равно t, а средняя скорость молекул равна v, то очевидно, что среднее расстояние между столкновениями, которое мы обозначим бук­вой l, равно произведению t и v;. Это расстояние между столк­новениями обычно называют длиной свободного пробега:

Длина свободного пробега l=tv. (43.9)

В этой главе мы не будем уточнять, какого рода среднее мы имеем в виду в каждом случае. Существующие разные средние — среднее, корень из среднего квадрата и т. д.— приблизительно равны и отличаются только множителями, близкими к единице. Поскольку для получения правильных множителей необходим подробный анализ, нам нет смысла очень уж стараться уточнять, какое именно среднее исполь­зуется в том или ином случае. Мы хотим еще предупредить читателей, что используемые для обозначения физических величин алгебраические символы (например, l для длины сво­бодного пробега) не являются общепринятыми просто потому, что об этом никто еще специально не договаривался.

Вероятность того, что молекула испытает столкновение, пройдя расстояние dx, равна dx/l, как вероятность столкно­вения за короткий промежуток времени dt равна dt/t. Призвав на помощь те же аргументы, что и раньше, читатель сможет показать, что вероятность того, что молекула пройдет по крайней мере расстояние х, прежде чем испытает следующее столк­новение, равна е-х/l.

Среднее расстояние, которое молекула проходит между столкновениями (длина свободного пробега l), зависит от коли­чества молекул, ее окружающих, и от того, какого «размера» эти молекулы, т. е. от того, насколько уязвимую мишень пред­ставляют они собой. «Размеры» мишени при столкновениях обычно описывают при помощи «эффективного сечения столк­новений»; эта же идея используется и в ядерной физике или в задачах о рассеянии света.

Рассмотрим движущуюся частицу, которая проходит рас­стояние dx внутри газа, содержащего n0рассеивателей (молекул) в единичном объеме (фиг. 43.1).

Фиг. 43,1. Эффективное сечение столкновения.

На каждой площадке единичной площади, перпендикулярной к направлению движения вы­бранной нами частицы, имеется n0dx молекул. Если каждая может быть представлена эффективной площадью столкновения, или, как обычно говорят, «эффективным сечением столкно­вения» sс, то полная площадь, покрываемая рассеивателями, равна scn0dx.

Под «эффективным сечением столкновения» понимается площадь, в которую должен попасть центр частицы, если она должна столкнуться с заданной молекулой. Если моле­кулы выглядят как маленькие шарики (классическая кар­тина), то следует ожидать, что sс=p(r1+r2)2, где r1и r2радиусы двух сталкивающихся молекул. Вероятность того, что наша частица столкнется с какой-нибудь молекулой, равна отношению площади, покрываемой рассеивающими молеку­лами, к полной площади, принятой нами за единицу. Та­ким образом, вероятность столкновения на пути dx равна sсn0dx:

Вероятность столкновения на пути dx =sn0 dx. (43.10)

Мы уже отметили раньше, что вероятность столкновения на пути dx может быть записана в терминах длины свобод­ного пробега l как dx/l. Сравнивая это с (43.10), можно связать длину свободного пробега с эффективным сечением столкновения:

1/l= scn0. (43.11)

Это равенство легче запомнить, если записать его так:

sсn0l = 1. (43.12)

Эта формула говорит, что если частица проходит путь I внутрь рассеивателя, в котором молекулы могут как раз покрыть всю площадь, то в среднем происходит одно столк­новение. В цилиндре высотой l, поставленном на основание единичной площади, содержится n0l рассеивателей; если каж­дый из них занимает площадь sс, то полная площадь, покрытая ими, равна n0lsc, а это как раз единичая площадь. Конечно, молекулы не покрывают всей площади целиком, потому что часть молекул прячется за соседние молекулы. Поэтому не­которые молекулы пройдут между столкновениями большее, чем l, расстояние. Ведь это только в среднем молекулам между столкновениями дается ровно столько времени, чтобы они смогли пройти расстояние l. Измеряя длину свободного про­бега l, можно определить эффективное сечение рассеяния scи сравнить этот результат с расчетами, основанными на де­тальной теории строения атомов. Но это уже совсем другая тема! А пока вернемся к проблеме неравновесных состояний.

§ 3. Скорость дрейфа

Мы хотим описать поведение одной или нескольких молекул, которые чем-то отличаются от огромного большинства осталь­ных молекул газа. Будем называть «большинство» молекул молекулами «фона», а отличающиеся от них молекулы получат название «особых» молекул, или (для краткости) S-молекул. Молекула может быть особой по целому ряду причин: она может быть, скажем, тяжелее молекул фона. Может она отли­чаться от них также химическим составом. А, может быть, особые молекулы несут электрический заряд — тогда это будет ион на фоне нейтральных молекул. Из-за необычности масс или зарядов на S-молекулы действуют силы, отличающиеся от сил между молекулами фона. Изучая поведение S-молекул, можно понять основные эффекты, которые вступают в игру во многих разнообразных явлениях. Перечислим некоторые из них: диффузия газов, электрический ток в батарее, осаждение, разделение при помощи центрифуги и т. д.

Начнем с изучения основного процесса: на S-молекулу в газе из молекул фона действуют какая-то особая сила F (это может быть сила тяжести или электрическая сила) и, кроме того, более обычные силы, обусловленные столкновениями с молекулами фона. Нас интересует общий характер поведения S-молекулы. Детальное описание ее поведения — это непре­рывные стремительные удары и следующие одно за другим столкновения с другими молекулами. Но если проследить внимательно, то станет ясно, что молекула неуклонно движется по направлению силы F. Мы говорим, что дрейф накладывается на беспорядочное движение. Но нам хотелось бы знать, как зависит скорость дрейфа от силы F.

Если в какой-то произвольный момент времени начать на­блюдать за S-молекулой, то можно надеяться, что попали мы как раз где-то между двумя столкновениями. Это время молекула употребит на то, чтобы в дополнение к скорости, оставшейся у нее после всех столкновений, увеличить состав­ляющую скорости вдоль силы F. Немного погодя (в среднем через время t) она снова испытает столкновение и начнет двигаться по новому отрезку своей траектории. Стартовая скорость, конечно, будет другой, а ускорение от силы F оста­нется неизменным.

Чтобы упростить сейчас дело, предположим, что после каж­дого столкновения наша S-молекула выходит на совершенно «свободный» старт. Это значит, что у нее не осталось никаких воспоминаний о прежних ускорениях под действием силы F. Та­кое предположение было бы разумным, если бы наша S-моле­кула была намного легче молекул фона, но это, конечно, не так. Позднее мы обсудим более разумное предположение.

А пока предположим, что все направления скорости S-молекулы после каждого столкновения равновероятны. Стартовая скорость имеет любое направление и не может дать никакого вклада в результирующее движение, поэтому мы не будем принимать во внимание начальную скорость после каждого столкновения. Но, кроме случайного движения, каждая S-молекула в любой момент имеет дополнительную скорость в направлении силы F, которая увеличивается со времени по­следнего столкновения. Чему равно среднее значение этой части скорости? Оно равно произведению ускорения F/m (где т — масса S-молекулы) на среднее время, прошедшее с момента последнего столкновения. Но среднее время, протекшее после последнего столкновения, должно быть равно среднему времени перед следующим столкновением, которое мы уже обозначили буквой t. Средняя скорость, порождаемая силой F,— это как раз скорость дрейфа; таким образом, мы пришли к соотношению

Vдр=Ft/m. (43.13)

Это наше основное соотношение, главное во всей главе. При нахождении t могут появиться всякого рода усложнения, но основной процесс определяется уравнением (43.13).

Обратите внимание, что скорость дрейфа пропорциональна силе. К сожалению, о названии для постоянной пропорцио­нальности еще не договорились. Коэффициент перед силой каждого сорта имеет свое название. В задачах, связанных с электричеством, силу можно представить как произведение заряда на электрическое поле: F=qE; в этом случае постоянную пропорциональности между скоростью и электрическим полем Е называют «подвижностью». Несмотря на возможные недоразу­мения, мы будем применять термин подвижность для отноше­ния скорости дрейфа к силе любого сорта. Будем писать

vдр=mF (43.14) и называть m, подвижностью. Из уравнения (43.13) следует

m=t/m. (43.15)

Подвижность пропорциональна среднему времени между столк­новениями (редкие столкновения слабо тормозят S-молекулу) и обратно пропорциональна массе (чем больше инерция, тем медленнее набирается скорость между столкновениями).

Чтобы получить правильный численный коэффициент в уравнении (43.13) (а у нас он верен), нужна известная осто­рожность. Во избежание недоразумений нужно помнить, что мы используем коварные аргументы, и употреблять их можно только после осторожного и детального изучения. Чтобы пока­зать, какие бывают трудности, хотя по виду вроде все благопо­лучно, мы снова вернемся к тем аргументам, которые привели к выводу уравнения (43.13), но эти аргументы, которые вы­глядят вполне убедительно, приведут теперь к неверному резуль­тату (к сожалению, такого рода рассуждения можно найти во многих учебниках!).

Можно рассуждать так: среднее время между столкнове­ниями равно т. После столкновения частица, начав двигаться со случайной скоростью, набирает перед следующим столкно­вением дополнительную скорость, которая равна произведению времени на ускорение. Поскольку до следующего столкновения пройдет время t, то частица наберет скорость (F/m)t. В момент столкновения эта скорость равна нулю. Поэтому средняя ско­рость между двумя столкновениями равна половине окончательной скорости, а средняя скорость дрейфа равна 1/2Ft/m. (Неверно!) Этот вывод неверен, а уравнение (43.13) правильно, хотя, казалось бы, в обоих случаях мы рассуждали одинаково убедительно. Во второй результат вкралась довольно коварная ошибка: при его выводе мы фактически предположили, что все столкновения отстоят друг от друга на время t. На самом деле некоторые из них наступают раньше, а другие позже этого времени. Более короткие времена встречаются чаще, но их вклад в скорость дрейфа невелика, потому что слишком мала в этом случае вероятность «реального подталкивания вперед». Если при­нять во внимание существование распределения свободного вре­мени между столкновениями, то мы увидим, что множителю 1/2, полученному во втором случае, неоткуда взяться. Ошибка произошла из-за того, что мы, обманувшись простотой аргу­ментов, попытались слишком просто связать среднюю скорость со средней конечной скоростью. Связь между ними не столь уж проста, поэтому лучше подчеркнуть, что нам нужна средняя скорость сама по себе. В первом случае мы с самого начала искали среднюю скорость и нашли ее верное значение! Быть может, теперь вам понятно, почему мы не пытались найти точ­ного значения всех численных коэффициентов в наших элемен­тарных уравнениях?

Вернемся к нашему предположению о том, что каждое столкновение полностью стирает из памяти молекулы все о былом ее движении и что после каждого столкновения для молекулы начинается новый старт. Предположим, что наша S-молекула — это тяжелый объект на фоне более легких мо­лекул. Тогда уже недостаточно одного столкновения, чтобы отобрать у S-молекулы ее направленный «вперед» импульс. Только несколько последовательных столкновений вносят в ее движение «беспорядок». Итак, вместо нашего первоначального рассуждения предположим теперь, что после каждого столк­новения (в среднем через время т) S-молекула теряет опре­деленную часть своего импульса. Мы не будем исследовать детально, к чему приведет такое предположение. Ясно, что это эквивалентно замене времени t (среднего времени между столкновениями) другим, более длинным t, соответствующим среднему «времени забывания», т. е. среднему времени, за которое S-молекула забудет о том, что у нее когда-то был импульс, направленный вперед. Если понимать tтак, то можно использовать нашу формулу (43.15) для случаев, не столь простых, как первоначальный.

§ 4. Нонная проводимость

Применим наши результаты к частному случаю. Предпо­ложим, что в сосуде, заполненном газом, содержатся также ионы — атомы или молекулы с избыточным электрическим зарядом. Схематически это выглядит так, как на фиг. 43.2.

Фиг. 43.2. Электри­ческий ток в ионизо­ванном газе.

Если две противоположные стенки сосуда сделаны из метал­лических пластин, то их можно подсоединить к полюсам батареи и создать таким образом в газе электрическое поле.

Электрическое поле будет с некоторой силой воздействовать на ионы, и они начнут свой дрейф к одной из пластин. В ре­зультате возникнет электрический ток, и газ со своими ионами будет работать как сопротивление. Выразив через скорость дрейфа ионный поток, можно рассчитать величину сопротивле­ния. Больше всего нас интересует зависимость ионного потока от приложенной к пластинам разности потенциалов V.

В нашем случае сосуд — это прямоугольный ящик, длина которого b, а площадь поперечного сечения А (см. фиг. 43.2). Если к пластинам приложена разность потенциалов V, то элек­трическое поле Е между пластинами равно V/b. (Электрический потенциал — это работа, совершаемая при переносе единичного заряда от одной пластины к другой. Сила, действующая на единичный заряд, равна Е. Если значение Е одинаково всюду между пластинами, что можно с достаточным основанием пред­положить в нашем случае, то затраченная на единичный заряд работа равна Eb, т. е. V=Eb.) В нашем случае на ионы дей­ствует сила qЕ, где q — заряд иона. Скорость дрейфа иона равна произведению силы на m:

vдр=mF=mq=mqV/b. (43.16)

Электрический ток I равен потоку заряда за 1 сек. Электри­ческий ток через одну из пластин равен, таким образом, полному заряду ионов, достигающих пластины за 1 сек. Если ионы дви­жутся к пластине со скоростью vдр, то за время Т пластины достигнут те ионы, которые находились не дальше, чем на расстоянии vдрT от нее. Если в единичном объеме содержится ni. ионов, то за время Т на пластине высадится niAvдрT ионов.

Каждый ион несет заряд q, поэтому

Собранный за время Т заряд=qniAvдрT. (43.17)

Ток / — это отношение собранного за время Т заряда к вре­мени Т:

I=qniAvдр. (43.18)

Подставляя сюда скорость дрейфа vдр из (43.16), получаем

I=mq2ni(A/B)V. (43.19)

Мы выяснили, что ток пропорционален разности потенциалов, это и есть закон Ома, а сопротивление R равно обратной по­стоянной пропорциональности:

1/R=mq2ni(A/B). (43.20)

Мы нашли связь сопротивления со свойствами молекул niq и m, которое в свою очередь зависит от t и m. Если мы при помощи атомных измерений определим niи q, то, измеряя R, можно определить m, а потом и t.

§ 5. Молекулярная диффузия

Перейдем к другой задаче, для которой нам придется не­сколько изменить метод анализа, — к задаче о диффузии. Пред­положим, что мы взяли ящик, заполненный газом, находящимся в тепловом равновесии, а потом в любое место внутри ящика вспрыснули небольшое количество другого газа. Назовем первоначальный газ газом «фона», а новый газ — «особым» газом. Особый газ начинает распространяться по всему ящику, но распространение это замедляется наличием молекул фона. Явление такого замедленного распространения называется диффузией. Диффузия в основном определяется столкновениями молекул особого газа с молекулами фона. После многих столк­новений особые молекулы более или менее равномерно распре­делятся по всему ящику. Важно не спутать диффузию газа с переносом больших количеств вещества в результате кон­векционных токов. Обычно смешение двух газов происходит именно в результате комбинации конвекции и диффузии. Сейчас нас интересует только такое перемешивание, которое не сопро­вождается «порывами ветра». Газ распространяется только благодаря молекулярному движению, т. е. происходит диф­фузия. Давайте выясним, быстро ли происходит диффузия.

Итак, мы приступаем к вычислению общего потока молекул особого газа, порождаемого молекулярным движением. Общий поток не равен нулю только тогда, когда распределение молекул отличается от равновесного, иначе усреднение молекулярного движения сводит общий поток к нулю. Рассмотрим сначала поток в направлении оси х. Чтобы определить, чему этот поток равен, мы должны вообразить площадку, перпендикулярную к оси, и подсчитать число молекул, пересекающих эту площадку. Чтобы определить общий поток, мы должны считать положи­тельными те молекулы, которые движутся в направлении положительных x, и вычесть из этого числа те молекулы, которые движутся в противоположном направлении. Как мы неоднократно убеждались, число молекул, пересекающих пло­щадку в течение времени DT, равно числу молекул, находя­щихся к началу интервала DT внутри объема, заключенного между нашей площадкой и площадкой, расположенной от нее на расстоянии vDT. (Заметим, что здесь v — настоящая скорость молекулы, а отнюдь не скорость дрейфа.)

Мы упростим наши выкладки, если возьмем площадку еди­ничной площади. Тогда число особых молекул, пересекающих площадку слева направо (справа от площадки лежат положи­тельные x-направления), равно n_vDT, где n_ — число особых молекул в единичном объеме слева от площадки (с точностью до множителя ~1/6, но мы такими множителями пренебрежем!). Аналогично, число особых молекул, движущихся справа налево, равно n+vDT, где n+плотность особых молекул справа от площадки. Если мы обозначим молекулярный поток буквой J, под которой мы будем понимать общий поток молекул через единичную площадку за единицу времени, то получим

или

J=(n--n+)v. (43.22)

А что понимать под n-и n+? Когда мы говорим «плотность слева от площадки», то как далеко налево? Мы должны изме­рить плотность в том месте, откуда молекула отправляется в свой «свободный полет», потому что число стартующих молекул определяется числом молекул, находящихся в этом месте. Таким образом, n-— это плотность молекул на расстоянии длины свободного пробега l слева от нашей воображаемой площадки, а n+ — плотность молекул на расстоянии длины свободного пробега справа от нее.

Распределение особых молекул в ящике удобно описывать с помощью непрерывной функции х, у и z, которую мы обозна­чим na. Под na(х, у, z) нужно понимать плотность особых молекул в маленьком объеме вокруг точки (х, у, z). Тогда

разность (n+-n-) можно представить в виде

(n+-n-)=(dna/dx)Dx=(dna/dx) ·2l (43.23)

Подставляя этот результат в (43.22) и пренебрегая множителем 2, получаем

Jx=lv(dna/dx) (43.24)

Мы выяснили, что поток особых молекул пропорционален про­изводной плотности, или, как иногда говорят, «градиенту плотности».

Ясно, что мы сделали несколько грубых приближений. Не говоря уже о том, что мы постоянно забывали о множителях, мы использовали v, когда нужно было ставить vx, а разместив объемы, содержащие молекулы n+и n-, на концах перпенди­куляров к площадке, взяли перпендикуляры длиной l. Между тем для тех молекул, которые движутся не перпендикулярно к поверхности, l соответствует длине наклонного пути. Можно исправить эти недоделки; более тщательный анализ показал бы, что правую часть уравнения (43.24) нужно умножить на 1/3. Итак, более правильный ответ выглядит следующим образом:

Аналогичные уравнения можно написать для токов вдоль y- иz-направлений.

С помощью макроскопических наблюдений можно измерить ток Jхи градиент плотности dna/dx. Их отношение, найденное экспериментально, называется «коэффициентом диффузии» D, Это значит, что

Мы смогли показать, что ожидаемое значение коэффициента D для газа равно

Пока мы изучили в этой главе два разных процесса: под­вижность (дрейф молекул под действием «внешней» силы) и диффузию (разбегание молекул, определяемое только внутрен­ними силами, случайными столкновениями). Однако эти про­цессы связаны друг с другом, потому что в основе обоих яв­лений лежит тепловое движение, и оба раза в расчетах появля­лась длина свободного пробега l.

Если в уравнение (43.25) подставить l=vt и t=mm, то получится

Ho mv2 зависит только от температуры. Мы еще помним, что

1/2mv2=3/2kT, (43.29)

так что

Jx=-mkT(dna/dx). (43.30)

Таким образом, D, коэффициент диффузии, равен произве­дению kT на m, коэффициент подвижности:

D=mkT. (43.31)

Оказывается, что (43.31) — это точное соотношение между коэффициентами. Хотя мы исходили из очень грубых пред­положений, не нужно к нему добавлять никаких дополнительных множителей. Можно показать, что (43.31) в самом деле всегда удовлетворяется точно. Это верно даже в очень сложных слу­чаях (например, для случая взвешенных в жидкости мелких частиц), когда наши простые вычисления явно отказываются служить.

Чтобы показать, что (43.31) верно в самых общих случаях, мы выведем его иначе, используя только основные принципы статистической механики. Представьте себе, что почему-то существует градиент «особых» молекул и возник ток диффузии, пропорциональный, согласно (43.26), градиенту плотности. Тогда мы создадим в направлении оси х силовое поле так, что на каждую особую молекулу будет действовать сила F. По определению подвижности m скорость дрейфа дается соотно­шением

vдр=mF. (43.32)

Используя обычные аргументы, можно найти ток дрейфа, (общее число молекул, пересекающих единичную площадку за единицу времени):

Jдр=nаvдр. (43.33)

или

Jдр=namF. (43.34)

А теперь можно так распорядиться силой F, что ток дрейфа, вызываемый силой F, скомпенсирует диффузию, тогда полный ток особых молекул будет равен нулю. В этом случае мы имеем

Jх+Jдр=0,

или

D(dna/dx)=namF. (43.35)

В этом случае «компенсации» существует постоянный (во времени) градиент плотности, равный

dna/dx=namF/D. (43.36)

Теперь уже легко соображать дальше! Ведь мы добились равновесия, и можем теперь применять наши равновесные за­коны статистической механики. По этим законам вероятность найти молекулу около точки х пропорциональна ехр (-U/kT), где U — потенциальная энергия. Если говорить о плотности молекул nа, то это значит:

nа=n0e-UkT. (43.37) Дифференцируя (43.37) по х, получаем

или

В нашем случае сила F направлена вдоль оси х и потенци­альная энергия U равна -Fx, a-dU/dx=F. Уравнение (43.39) принимает вид

[Это в точности уравнение (40.2), из которого мы и вывели ехр(-U/kT); круг замкнулся.] Сравнивая (43.40) и (43.36), мы получаем уравнение (43.31). Мы показали, что в уравнении (43.31), которое выражает ток диффузии через подвижность, все коэффициенты правильны, а само уравнение правильно всегда. Подвижность и диффузия тесно связаны. Эту связь открыл Эйнштейн.

§ 6. Теплопроводность

Методы кинетической теории, которую мы так успешно применяли, позволяют также рассчитать и теплопроводность газа. Если газ в верхней части ящика горячее, чем внизу, то тепло перетечет сверху вниз. (Мы предполагаем, что теплее верх­няя часть ящика, потому что в противном случае возникнут поднимающиеся вверх конвекционные токи, а этот случай уже не имеет отношения к теплопроводности.) Перенос тепла от горячего газа к холодному вызывается диффузией «горячих» молекул (т. е. молекул с большой энергией) вниз и диффузией «холодных» молекул вверх. Чтобы вычислить поток тепловой энергии, мы должны узнать сначала об энергии, переносимой через выделенную площадку сверху вниз (ее переносят дви­жущиеся вниз молекулы), потом об энергии, переносимой через эту же площадку снизу вверх (за это уже отвечают моле­кулы, поднимающиеся вверх). Разность этих потоков энергии даст нам полный поток энергии сверху вниз.

Теплопроводность c определяется как отношение скорости переноса тепловой энергии через единичную площадку к гра­диенту температуры:

Поскольку ход вычислений теплопроводности очень похож на вычисление потока заряженных частиц в ионизованном газе, то мы предлагаем читателю в виде упражнения доказать, что

при этом (g-1)kT —средняя энергия молекулы при темпера­туре Т.

Если вспомнить о соотношении nlsc=1, то теплопроводность можно записать в виде

Мы получили поистине удивительный результат. Известно, что средняя скорость молекул газа зависит от температуры и не зависит от плотности. Можно думать, что sсзависит только от размеров молекул. Таким образом, наш очень простой вывод сводится к тому, что теплопроводность c (а следовательно, и скорость потока тепла в каждом частном случае) не зависит от плотности газа! Изменение числа «носителей» энергии при изменениях плотности в точности компенсируется изменением расстояния, которое пробегает «носитель» между столкнове­ниями.

А теперь можно спросить: Действительно ли поток тепла всегда не зависит от плотности газа? Ну а если плотность стремится к нулю и в ящике совсем не остается газа? Конечно, нет! Формула (43.43), как и другие формулы этой главы, вы­ведена в предположении, что средняя длина свободного пробега между столкновениями гораздо меньше любых размеров ящика. Если плотность газа столь мала, что молекула имеет неплохие шансы пробежаться от одной стенки ящика к другой, ни разу не столкнувшись, то все вычисления этой главы рухнут. В этих случаях следует вернуться к кинетической теории и заново все детально рассчитать.

 

 

Поделитесь на страничке

Следующая глава >

Похожие главы из других книг:

Глава 4

Из книги автора

Глава 4 «Русский свет»«Применение электрической энергии в России за последние годы значительно развилось, электротехническая же промышленность в ней до последнего времени находится в младенческом возрасте». Это строчки из толстой книги профессора Артура Вильке


Глава 9

Из книги автора

Глава 9 Миртиль и Том, молча слушавшие разговор взрослых, повернулись к Буакару.— В атмосфере? Пожалуй, нет, господин полковник, — отозвался тот. — На востоке и вправду проплыли несколько подозрительных белых облачков, но я единственный, кто их видел. А вы не хуже меня


Глава 10

Из книги автора

Глава 10 Еще задолго до того, как маленькая Миртиль начала что-то понимать, жители городка изо дня в день говорили ей, что она принцесса. Со временем, объясняли девочке, она станет королевой и будет управлять целой страной; тогда, хотя территория Северных Облаков и невелика,


Глава 11

Из книги автора

Глава 11 Дверь открылась, и Миртиль застыла на месте. У нее перехватило дыхание. Перед ней стояла такая красивая женщина, какой она еще никогда не видела. Черты г-жи Дрейк были поразительно тонкими: ветерок, овевавший ее прекрасное лицо, и тот, казалось, прикасался к нему с


Глава 12

Из книги автора

Глава 12 Г-жа Дрейк сидела напротив принцессы. Ноздри Миртиль щекотал сладковатый запах настоя, курившегося в чашках. Вдыхая ароматы далеких стран, она, никогда не покидавшая Миртильвиль, как будто перенеслась в неведомые края и мчалась по воздуху над огненно-алыми


Глава 13

Из книги автора

Глава 13 Над городком занималось тихое утро следующего дня. Небо ярко синело; однако было видно, что погода меняется: весь голубой свод усеяли тончайшие волокна просвечивающих облаков. Солнце только что поднялось на высоту Миртильвиля, и теперь его лучи блестели на


Глава 14

Из книги автора

Глава 14 Незаметно махнув рукой Тому, Тристам занял свое обычное место в последнем ряду. Миртиль бросила беглый взгляд на его руку: вчерашний ожог зажил. Джерри, сидевший рядом с Томом, был вне себя от ярости. Опять этот Тристам дешево отделался! Безобразие! Давно пора


Глава 15

Из книги автора

Глава 15 — Мне совсем не хочется идти к директрисе, — сказал Тристам, как только они с Томом оказались в коридоре.— Раньше нужно было думать, — возразил Том. — Теперь ничего не поделаешь. Придется идти!И друзья поплелись к директорскому кабинету. Тристам не замечал, что


Глава 16

Из книги автора

Глава 16 Ветер дул все сильнее. Стебли рисовых метелок нещадно хлестали Тома и Тристама, убегавших от преследователей. Обезумев от страха, мальчики думали только о том, чтобы нагнать г-жу Дрейк. До защитного ограждения было уже недалеко. Возле городской черты мать Тристама


Глава 1

Из книги автора

Глава 1 Тристам и Том летели очень высоко, много выше, чем поднимаются облака естественного происхождения. С тех пор как они оставили позади льдистую пелену, с которой на Миртильвиль обрушились войска тирана, прошел не один час.Небо здесь было не таким, как над их городком:


Глава 6

Из книги автора

Глава 6 Том и Тристам смотрели, как над Землей вереницей плывут облака; казалось, что все они разложены на огромном натянутом в небе полотнище.Том указал на облако вдалеке, возвышавшееся над остальными.— Видишь вон то облако — с верхушкой, как наковальня?— Угу, — кивнул


Глава 13

Из книги автора

Глава 13 Внутри жуткого облака было нечем дышать. Густой серый туман ослепил Миртиль и Тристама, порывистый ветер, с каждым мгновением усиливаясь, швырял машину как щепку, и они почти сразу перестали понимать, куда их тащит. Мощь чудовища, в утробе которого они оказались,


Глава 14

Из книги автора

Глава 14 До земли оставалось метров сто. Тристам смотрел, как быстро она приближается. Удастся ли им приземлиться?Они летели над редким лесом, впереди был виден холм с проплешиной на отлогом склоне. Потихоньку дергая за стропы, Тристам решил, что сможет управлять


Глава 15

Из книги автора

Глава 15 Они шли долго, может быть, несколько часов. Тристам молча шагал за Вакингом и Миртиль, улавливая обрывки их разговора. Так, он услышал, что большинство летчиков из Белой Столицы, по мнению лейтенанта, должны были спастись и даже не слишком пострадать: все они были


Глава 16

Из книги автора

Глава 16 Они шли по лесу, и Миртиль рассказывала Тристаму обо всем, что с ней приключилось: о встрече с тираном, о тропическом циклоне и о том, какой выбор предложил ей этот человек, не скрывавший своего безумия.— Ты выбрала смерть? — спросил потрясенный Тристам.— Да. И