Глава II. Предтечи

We use cookies. Read the Privacy and Cookie Policy

Глава II. Предтечи

Призраки

Не без пользы прошел XIX век. Велики его результаты. Гордый, вознесшийся на триста метров шпиль Эйфелевой башни не только символизирует достижения техники века. Он в буквальном смысле опирается на механику и теорию упругости, на математику и спектральный анализ, давшие возможность рассчитать конструкцию башни и сварить ее сталь. Техника — дитя науки, она не родится из вдохновения поэта.

Рубеж века не обнаружишь ни среди годичных колец тысячелетних секвой, ни в напластованиях земных слоев. Не отмечен он и в космосе на бесконечной спирали, описываемой нашей Землей, летящей вместе с Солнцем по его огромной орбите вокруг центра Галактики. А куда мчится сама Галактика? Но мы, столь ничтожные на фоне этого величия, любим создавать себе поводы к торжествам. Хотя бы для того, чтобы скрасить однообразие будней. И установив началом веков далеко не достоверный день рождения Христа, и разработав десятеричную систему счисления...

Одним словом, наша история подошла к рубежу XX века.

Итак, что же добавил XIX век наиболее существенного в интересующую нас область учения о свете? Прежде всего — закон сохранения и превращения энергии, интуитивно предвиденный еще великим Ломоносовым и положивший начало термодинамике. Затем электромагнитную теорию Максвелла, включившую в себя волновую оптику Френеля и породившую электронную теорию Лоренца.

Не так уж мало для одного века! Он не прошел впустую. А ведь были достижения поменьше, но вполне достойные того, чтобы в разряде эпохальных пребывать в веках. Вечно будет в строю вариационный метод Гамильтона, никогда не останутся без дела спектральный анализ и радиоволны...

Однако не только благополучием и победами встречали ученые приближение нового века. С ними оставался призрак эфира, грозивший разделить непроходимой пропастью механику и электродинамику. Оставался призрак «ультрафиолетовой катастрофы», противопоставлявший электродинамику термодинамике. Новорожденный электрон выглядел чуждым остальной материи. Да и привычное вещество подавало непонятные сигналы, зашифрованные в ярких линиях спектра и говорившие ученым лишь одно — вы почти ничего не знаете!

Кванты

Вильгельм Вин, автор закона смещения, получившего его имя, и Макс Планк, берлинский профессор, уже завоевавший известность трудами по термодинамике, нашли способ избавить физику от призрака «ультрафиолетовой катастрофы». Вернее, раскинув математический пасьянс, они обнаружили надежду на выход. Они выдвинули предположение о том, что интенсивность излучения «черного тела» не растет, как в формуле Рэлея, а уменьшается с длиной волны. Они даже нащупали для этого уменьшения определенную закономерность. Но ни самопредположение, ни экспоненциальный вид закономерности не следовали ни из чего, кроме как из необходимости согласовать свойства излучения с фактом существования мира, не охлажденного до абсолютного нуля, несмотря на роковой закон Вина.

В 1899 году эксперимент подтвердил новый закон Вина — Планка, и, казалось, одна из химер умирающего века исчезнет вместе с ним. Но более точные измерения Луммера и Принсгейма привели к большим отклонениям от закона Вина — Планка. Все начиналось вновь. И Планк снова принялся за работу.

Расчеты Планка подтвердили ужасный вывод: мир ожидает ультрафиолетовая смерть. Но в окружающей жизни физики не находили ни малейшего симптома столь печального исхода. Они должны были избавить и теорию от нелепого заблуждения. Этой проблемой мучился не один Планк. Многие ученые не хотели мириться с бессилием созданных ими формул.

Но первая удача пришла к наиболее подготовленному. Ведь речь шла о примирении термодинамики и электродинамики, о связи между энергией и частотой излучения. Закону распределения Вина соответствовала одна связь между ними, формула Рэлея давала другую. Из этого разрыва ухмылялась ультрафиолетовая смерть.

19 октября 1900 года Планк доложил немецкому физическому обществу о том, что он нашел формулу, связывающую, казалось, несовместимые высказывания Вина и Рэлея. Новая формула давала формальный выход из драматической ситуации, но, как и предыдущая формула Вина — Планка, она не имела фундамента ни в термодинамике, ни в электродинамике.

Но недаром имя Планка до сих пор произносится с благоговением. Планк окончательно избавил физику от призрака «ультрафиолетовой катастрофы».

«После нескольких недель самой напряженной работы в моей жизни тьма, в которой я барахтался, озарилась молнией, и передо мной открылись неожиданные перспективы», — говорил впоследствии Планк в своем нобелевском докладе.

Молния, о которой он говорил, озарила целую область знаний о природе вещества. Это случилось в том же 1900 году. Рассматривая процесс обмена энергией между раскаленным телом и окружающим пространством, Планк предположил, что обмен совершается не непрерывно, а в виде небольших порций. Описав этот процесс математически, он пришел к формуле, в точности совпадавшей с распределением энергии в спектре Солнца и других нагретых тел. Так в науку вошло представление о минимальной порции энергии — кванте.

С самого рождения квант оказался капризным младенцем. Введенный Планком в расчет в качестве кванта энергии, он появился в окончательной формуле в виде кванта действия — величины, являющейся произведением энергии на время. Причина этой трансформации оставалась неясной. Постепенно Планк, а вслед за ним и другие ученые примирились с дискретностью энергии, но дискретность механического действия долго оставалась непостижимой.

Загадку решил Эйнштейн. Он пришел к выводу, что квантовая теория Планка, созданная только для объяснения механизма обмена тепловой энергией между электромагнитным полем и веществом, должна быть существенно расширена. Он установил, что энергия электромагнитного поля, в том числе и световых волн, всегда существует в виде определенных порций — квантов.

Так Эйнштейн извлек квант из его колыбели и продемонстрировал людям его поразительные возможности. Представление о кванте света (фотоне) как об объективной реальности, существующей в пространстве между источником и приемником, а не о формальной величине, появляющейся только при описании процесса обмена энергией, сразу позволило ему создать стройную теорию долго мучившего ученых фотоэффекта и других загадочных явлений. Это подвело фундамент и под зыбкую в то время формулу Планка. Когда Эйнштейн смело допустил, что электромагнитная энергия всегда существует в виде квантов, стало уже трудно предположить, что она взаимодействует с веществом не квантами, а непрерывно, как думали до Планка.

Квантовая теория света, успешно справившаяся с загадкой фотоэффекта, отнюдь не была всесильной. Наоборот, она была совершенно беспомощной в попытках описать ряд общеизвестных явлений. Например, таких, как возникновение ярких цветов в тонких слоях нефти, разлитой на воде, или существование предельного увеличения микроскопа и телескопа. Волновая же теория света, бессильная в случае фотоэффекта, легко справлялась с такими вопросами. Это вызвало непонимание и длительное недоверие к квантовой теории света. Ее не принял и отец квантов Планк.

Недоверие Планка к теории фотонов было столь велико, что побудило его даже к отказу от своей собственной теории квантов. Он надеялся при помощи компромисса примирить свое тяготение к классическим традициям с настоятельными требованиями опыта. Ему казалось, что все будет спасено, если принять, что свет распространяется и поглощается в соответствии с классическими волновыми законами, а дискретность есть свойство вещества, и квантование энергии возникает лишь в процессе излучения света веществом. Планк изложил эту точку зрения в докладе Сольвеевскому конгрессу, состоявшемуся в 1911 году.

Эйнштейн не придавал трагического значения такому противоречию. Наоборот, он считал его естественным, отражающим сложный, многогранный (мы сказали бы — диалектический) характер природы света. Он считал, что в этом проявляется реальная двойственная сущность света. А постоянная Планка играет существенную роль в объединении волновой и квантовой картины. Она воплощает в себе союз волн и частиц.

Связь между частотой света и энергией фотонов, существование которых было предсказано, а по существу, открыто Эйнштейном, не укладывалась в представления, неотделимые от всего древа классической науки.

Не удивительно, что все думающие физики пытались осознать эту связь на причинной основе. (Не думающие физики просто отмахивались от крамольной теории световых квантов.)

Вот одна из попыток, о которой через полвека в шуточной форме вспомнил ее автор, замечательный физик Макс Борн.

Вообразите несколько яблонь, у которых длина плодоножек, на которых висят яблоки, обратно пропорциональна квадрату высоты над землей. Если трясти яблоню с определенной частотой, то яблоки, висящие на определенной высоте, раскачаются в резонанс и упадут вниз. Они долетят до земли с кинетической энергией, пропорциональной высоте, с которой они упали. Значит, эта энергия пропорциональна частоте. Ведь резонансная частота, приводящая к падению яблока, пропорциональна высоте, ибо она зависит от длины подвеса-плодоножки, играющей роль длины подвеса маятника, грузом которого служит яблоко.

Вы скажете, что такое рассуждение наивно. Да, оно кажется наивным через пятьдесят лет, но в то время отец квантов Планк воспроизвел его в своей лекции.

Как мы увидим позже, распространив идеи Эйнштейна на микрочастицы, французский физик Луи де Бройль заложит основы волновой механики — одного из краеугольных камней фундамента современной квантовой физики.

При создании теории фотоэффекта и гипотезы световых квантов проявилась особенность гения Эйнштейна — вместо введения частных гипотез, отвечающих на конкретные вопросы, давать революционные решения, одновременно проясняющие множество сложных и разнообразных проблем. Эта черта во всем блеске проявилась в основном деле жизни Эйнштейна — в создании теории относительности, приведшей к революции в современной науке.

Атомы

Таинственные закономерности спектральных серий постепенно ложились все более тяжким грузом не только на специалистов по спектральному анализу, но и на склонных к обобщениям мыслителей, стремившихся превратить неупорядоченные груды фактов в строгую конструкцию теории.

Вот эти факты.

1870 год. Стони обратил внимание на то, что частоты трех главных линий спектра водорода относятся как целые числа — 20:27:32.

1871 год. Стони вместе с Рейнольдсом установили, что частоты линий спектра хлористого хромила находятся в простых отношениях с совершенно неожиданными величинами — частотами гармонических колебаний скрипичной струны.

1885 год. Бальмер показал, что числа, полученные Стони, — частный случай более общего закона, в выражение которого входит одна большая постоянная величина, число 2, и переменная величина, принимающая целочисленные значения 3, 4, 5 и т.д.

Работа Бальмера вызвала резонанс в умах экспериментаторов. Через несколько лет Ридберг нашел подобные закономерности, объединяющие серии линий в спектре таллия и в спектре ртути. А затем Кайзер и Рунге начали фотографировать спектры с целью упростить процесс измерения, и непонятные закономерности посыпались как из рога изобилия.

Первое десятилетие XX века не изменило положения. Оно, пожалуй, только еще больше запуталось, когда в 1904 году Лайман нашел новую серию спектральных линий водорода в ультрафиолетовой части спектра, невидимой глазу, а в 1909 году Пашен обнаружил столь же невидимую серию в инфракрасной части спектра водорода.

Самым удивительным было то, что эти новые серии описываются формулами, очень похожими на формулу Бальмера, а большая постоянная величина, входящая в них, оказалась в точности одинаковой. Расхождение не наблюдалось и в миллионной доле ее! Такое не могло быть случайным. Теперь эта величина называется постоянной Ридберга.

В 1908 году Ритц, пытаясь выяснить характер спектральных закономерностей, уловил странные связи между числами, характеризующими частоты спектральных линий. Оказалось, что простым сложением или вычитанием частот каких-либо двух линий можно получить частоту третьей линии. Так были найдены новые, ранее неизвестные, слабые спектральные линии. Правда, не все предсказания подтверждались. Но хотелось думать, что отсутствующие линии просто очень слабы и в будущем их удастся обнаружить.

Многим в то время уже было ясно, что в спектральных сериях зашифрованы сокровенные тайны атомов. Пуанкаре, обсуждая спектральные закономерности, напоминающие законы колебаний струн, мембран и органных труб, и признавая бессилие науки перед этими фактами, писал: «...я думаю, здесь заключена одна из самых важных тайн природы». Цыпленок нового закона отчетливо стучал в скорлупу, но никто не мог помочь ему пробиться к свету.

Загадка атома пришла к нам из глубокой древности, и XIX век лишь усложнил ее, не дав никакой надежды на ее решение.

Демокрит приписывал атомам только два свойства — величину и форму, Эпикур добавлял третье — тяжесть. Но века не могли подтвердить или опровергнуть догадки древних. Периодически ученые то увлекались идеей делимости вещества, то пренебрегали ею.

В самом начале XIX века Риттер предположил, что не только вещество, но и электричество состоит из атомов. В середине века Вебер писал о том, что движение атома электричества вокруг материального ядра может объяснить оптические и тепловые эффекты. В 1881 году Стони рассчитал величину атома электричества. Забавно, что эта величина в течение десяти лет существовала безымянной, пока ее отец Стони не дал ей имя «электрон».

Тучные годы

Кто из безымянных авторов библии придумал притчу о семи тощих и семи тучных коровах? Урожайные годы бывают не только на полях, но и в лабораториях. В 1895 году Попов изобрел радио. Тогда же Перрен вместе с Липманом обнаружили отрицательный заряд катодных лучей Крукса и тем положили начало электронике. (Много лет спустя, наш замечательный современник академик А.И. Берг объединил этих близнецов в синтетическую науку — радиоэлектронику.) В том же году Рентген, поддавшись всеобщему увлечению исследованием катодных лучей, открыл новые икс-лучи, впоследствии названные его именем.

Следующий, 1896 год тоже принадлежал к тучным. Анри Беккерель, внук известного физика Антуана Беккереля, продолжал исследования свечения солей урана, таинственного явления, ставшего главным увлечением его отца Эдмона Беккереля. Оказывается, и в физике существуют династии: сын Анри Беккереля, Жан, тоже был известным физиком.

Но возвратимся к Анри Беккерелю, изучавшему люминесценцию ураниловых солей, которые ярко светились в темноте, если их до того выставляли под лучи солнца. Он открыл, что невидимое излучение солей урана не связано с предварительным освещением.

Узнав, что недавно открытые икс-лучи вызывают утечку электрического заряда с заряженного тела, Беккерель решил проверить, не способно ли к этому же открытое им излучение. Опыт подтвердил его догадку. Теперь он мог пользоваться двумя методами — фотографическим и электрическим. Прошло лишь два года, и супруги Кюри обнаружили, что торий обладает теми же свойствами, что и уран. Они ввели термин «радиоактивность» для обозначения особого свойства тех веществ, которые способны испускать «лучи Беккереля». Заметив, что некоторые минералы радиоактивнее тория и урана, они начали искать причину этого и обнаружили полоний, названный так в честь родины Марии Кюри, а затем радий, наиболее радиоактивный из всех известных до того. На рубеже нашего века Беккерель обнаружил, что его лучи отклоняются магнитом, а Резерфорд, о котором мир узнал лишь впоследствии, установил, что эти лучи состоят из двух частей. Он назвал одну из них альфа-излучением, она сильно поглощалась веществом, а другую бета-излучением, она поглощалась значительно слабее.

Вскоре Вийяр обнаружил еще более проникающую компоненту, совсем не отклоняемую магнитом. Он назвал ее гамма-излучением.

Постепенно было установлено, что альфа-лучи заряжены положительно, бета-лучи отрицательно, а гамма-лучи совсем не несут заряда, чем напоминают лучи Рентгена. Удалось установить поразительный факт: частицы бета-лучей имели различные скорости, а отношение их заряда к массе менялось со скоростью частиц. Это заставило вспомнить о старой мысли Абрагама, считавшего возможным, что масса электрона, по крайней мере частично, зависит от электромагнитного поля. Не являются ли бета-лучи электронами и не прав ли Абрагам?

Радиоактивные процессы возникают в самых глубинах атомов. При этом одновременно выделяется тепло. Пьер Кюри вместе с Лабордом изучили процесс и двумя способами определили, что каждый грамм радия ежечасно выделяет 100 калорий энергии. Откуда она берется?

Еще раньше Мария Кюри предположила, что тепло выделяется радиоактивным веществом во время испускания лучей Беккереля, и при этом радиоактивные вещества очень медленно изменяются. Но такая гипотеза противоречила всем основам науки — закону сохранения энергии (откуда берется эта энергия?), закону сохранения вещества (как может изменяться радиоактивное вещество?) и интуитивному многовековому представлению о неизменности атомов.

Испугавшись собственной смелости, Мария выдвинула вторую гипотезу: радиоактивные вещества улавливают неизвестное внешнее излучение, недоступное нашим приборам, и преобразуют его в тепло и энергию радиоактивного излучения.

Время показало, что и в науке безграничная смелость иногда лучше робкой осторожности. Все три грозных возражения против первой из гипотез превратились в ее незыблемые доказательства.

Дерзкий японец

Исследования радиоактивности привели к открытию радиоактивных превращений атомов. Эйнштейн выявил глубокую связь между энергией и веществом и объединил два старых закона в единый закон сохранения энергии и вещества, в закон сохранения материи. Один из замечательных примеров того, как глубоко законы физики связаны с общими положениями диалектического материализма.

Все явственнее назревала необходимость осознать сложные законы радиоактивных превращений, представлявшихся ученым массой несвязанных эмпирических гипотез. Особенно настоятельным это стало после 1908 года, когда Резерфорд установил, что альфа-частицы, вылетающие из радиоактивных веществ, представляют собой ионизированные атомы гелия. Гелий получается из радиоактивных элементов! Столь крамольная возможность стала реальностью.

Нужно было решиться приступить к решению загадки атома. До того существовало лишь весьма общее предположение Праута о том, что атомы всех веществ каким-то образом образуются из водорода. Гипотеза, основанная на кратности атомных весов, верность которой стала сомнительной после уточнения измерений атомных весов ряда элементов, обнаруживших существенное отклонение от кратности. (Впоследствии, после открытия изотопов, это возражение отпало, однако гипотеза Праута уже была не нужна.)

Первую модель атома предложил Джозеф Джон Томсон, знаменитый Джи-Джи, которого иногда путают сне менее знаменитым Вильямом Томсоном, впоследствии получившим титул лорда Кельвина.

Короткое время Джи-Джи считал, что хорошей моделью атома могут служить магнитики Майера. Майер подвешивал над сосудом с водой большой магнит, а на воду пускал маленькие пробочки с воткнутыми в них намагниченными иглами. Маленькие магнитики устанавливаются в устойчивые конфигурации: один в центре, под большим магнитом, вокруг него шесть магнитиков, образующих правильный шестиугольник, затем десятиугольник больших размеров и вокруг него двенадцати угольник. Майер заметил, что, покачав большой магнит, можно заставить маленькие магнитики переместиться. И тогда внешние конфигурации превращаются в девяти- и тринадцатиугольники. Майер считал, что это напоминает поведение некоторых реальных тел, способных изменять свои свойства при затвердевании.

Впрочем, вскоре Томсон понял, что эта модель слишком сложна и не может описать многие известные свойства атомов.

В игру включился Вильям Томсон. Он заметил, что опыты с лучами Крукса и бэта-частицами свидетельствуют о том, что электроны пролетают не только между атомами, но и сквозь них. Он предполагал, что электрон, находящийся вне атома, притягивается к нему с силой, пропорциональной квадрату расстояний между их центрами. Если же электрон пролетает внутри атома, то притяжение пропорционально первой степени этого расстояния. Так могло быть, только если весь объем атома заполнен чем-то, имеющим положительный заряд, а размеры электронов много меньше размеров атомов.

Кельвин считал, что нейтральность атома обеспечивается тем, что в нем существует ровно столько электронов, сколько нужно для компенсации положительного заряда. Они располагаются по сферическим поверхностям и, возможно, вращаются вокруг центра.

Такая модель, известная под названием «атома Томсона», просуществовала более десятилетия, хотя было ясно, что она не объясняет многих фактов и не отвечает требованиям устойчивости. Так еще раз проявила свою иронию Ее Величество Наука, милостивая к корифеям, покорно несущим ее шлейф, и пренебрегающая провидцами, обгоняющими ее неспешную величественную процессию.

В декабре того же 1903 года, когда оба Томсона, более молодой Джи-Джи и маститый лорд Кельвин, закончили в общих чертах построение своей модели атома, японский физик Нагаока сообщил Токийскому физико-математическому обществу о своей модели атома, построенной наподобие системы Сатурна и его колец. В следующем году это сообщение появилось в лондонском журнале «Природа», но не вызвало особого резонанса среди физиков. Сейчас мы можем лишь удивляться подобному невниманию и пытаться объяснить его гипнотизирующим влиянием авторитета, инерцией ума или традиционной ссылкой на судьбу идей, опередивших свое время.

Нагаока исходил из ясно осознанной необходимости объяснить закономерности спектральных серий и явления радиоактивности. Его статья называлась «О динамической системе, иллюстрирующей спектральные линии и явление радиоактивности». Он писал: «Атом состоит из большого числа частиц одинаковой массы, расположенных по кругу через равные угловые интервалы и взаимно отталкивающихся с силой, обратно пропорциональной расстоянию между ними. В центре круга помещается тяжелая частица, которая притягивает другие частицы, образующие кольцо, по тому же закону... Рассмотренная система будет реализована, если по кольцу разместятся электроны, а положительный заряд в центре».

Модель Нагаоки могла объяснить сильные отклонения альфа-частиц, наблюдавшиеся Гайгером и Мерсоном при прохождении альфа-частиц через тонкие металлические фольги. Модель атома Томсона была здесь бессильна. Несмотря на все это, планетарная модель атома прочно ассоциируется с именем Резерфорда, который возродил ее в 1913 году, когда пришло время, и при его участии были получены опытные факты, превратившие планетарную модель из гипотезы в очевидную необходимость.

Один из решающих доводов в пользу планетарной модели получил ассистент Резерфорда Мозли из наблюдения спектров рентгеновских лучей: «Атому присуща характерная величина, регулярно увеличивающаяся при переходе от атома к атому (в периодической системе). Эта величина не может быть ничем иным, как зарядом внутреннего ядра».

Результат, полученный Мозли, прекрасно сочетается с законом превращения радиоактивных элементов, открытым Соди и Резерфордом за десять лет до того и вызывавшим резкие возражения консервативных сторонников традиционной точки зрения о вечности и неизменности атомов.

В модели Резерфорда все встало на свои места — в положительно заряженном ядре происходят все радиоактивные превращения, вокруг ядра вращаются электроны, ответственные за возникновение спектров и за химические взаимодействия.

Основной слабостью планетарной модели Нагаоки, не устраненной и Резерфордом, была невозможность количественно связать эту модель с явлением излучения и поглощения света и рентгеновских волн. Модель не позволяла рассчитать длины излучаемых и поглощаемых волн, более того, ее нельзя было примирить с фактом существования атомов. Ведь в соответствии с теорией Максвелла вращающийся по орбите электрон должен непрерывно излучать электромагнитные волны, передавая им часть своей кинетической энергии. При этом орбита электрона должна все более сжиматься и он должен быстро упасть на ядро.

Если и была надежда когда-нибудь в будущем объяснить этим радиоактивные превращения, то совместить такую модель с существованием стабильных атомов было совершенно невозможным.

Модель Резерфорда ждала неизбежная гибель. Но она не успела подвергнуться поруганию и забвению потому, что в лаборатории Резерфорда уже около года работал молодой датский физик Нильс Бор.

Атом бора — это не атом бора, а атом водорода

Бор отчетливо ощущал обширные возможности, содержащиеся в планетарной модели атома, и поставил себе целью спасти ее от анафемы, которой ей грозила классическая физика.

Спасителями могли быть только еретический квант действия, вошедший в науку, несмотря на все опасения его создателя Планка, и не менее крамольный фотон, отец которого — Эйнштейн — потом долгие годы был основным оппонентом Бора по самым сложным и глубоким проблемам современной физики.

Цитата, возможно слишком длинная, лучше всего покажет возникновение наиболее драматического скачка, вознесшего человечество над стройными громадами классической физики.

«Существование элементарного кванта действия выражает новое свойство индивидуальности физических процессов, совершенно чуждое классическим законам механики и электромагнетизма; оно ограничивает их справедливость теми явлениями, в которых величины размерности действий велики по сравнению со значением единичного кванта, даваемым новой атомистической постоянной Планка. Такое условие ни в какой мере не выполняется для электронов в атомах, хотя ему с избытком удовлетворяют явления в обычных физических опытах. И действительно, только существование кванта действия препятствует слиянию электронов с ядром в нейтральную тяжелую частицу практически бесконечно малого размера.

Признание такого положения тотчас же навело на мысль описывать удержание каждого электрона полем вокруг ядра как непрерывный ряд индивидуальных процессов, которые переводят атом из одного, из так называемых его стационарных состояний, в другое такое же состояние с испусканием освобожденной энергии в виде единичного кванта электромагнитного излучения. Эта идея внутренне сродни эйнштейновскому успешному толкованию фотоэлектрического эффекта, столь убедительно подтвержденному прекрасными работами Франка и Герца над возбуждением спектральных линий ударами электронов об атомы. Она дала не только прямое объяснение загадочных законов линейчатых спектров, распутанных Бальмером, Ридбергом и Ритцем, но и постепенно привела к систематической классификации, на основе спектроскопических данных, типов стационарной связи каждого электрона в атоме; это дало полное объяснение замечательным зависимостям между физическими и химическими свойствами элементов, — зависимостям, выраженным в знаменитой таблице Менделеева. Такое толкование свойства материи казалось осуществлением древнего идеала — свести формулирование законов природы к рассмотрению только чисел, — превосходящим даже мечты пифагорейцев. Основное предположение об индивидуальности атомных процессов означало в то же время неизбежный отказ от установления детальной причинной связи между физическими событиями, существование которой было в течение столетий бесспорной основой философии естествознания».

Бор сформулировал свои идеи в виде трех постулатов:

• атом может находиться в ряде определенных стационарных состояний, не теряя энергии на излучение;

• излучение возникает при переходе из одного стационарного состояния в другое;

• частота излучения определяется разностью энергий, соответствующих двум стационарным состояниям, между которыми совершается переход, и постоянной Планка.

Бор применил эти постулаты к простейшему атому, атому водорода, вокруг ядра которого вращается только один электрон. Каждый шаг был триумфом. Радиус орбиты электрона хорошо совпал с радиусом атома водорода, известным из опытов с газами. Подсчет частот, связанных с переходами между простейшими стационарными состояниями, совпал с известными сериями линий Бальмера и Пашена и позволил вычислить постоянную Ридберга, определенную ранее только из опыта.

Бор применил свою теорию к иону гелия — системе, также имеющей только один электрон, но вчетверо более тяжелое ядро, чем ядро атома водорода. Бор получил серию частот, совпавшую с серией спектральных линий, наблюдавшихся в некоторых звездах и в то время приписывавшихся водороду. Впоследствии правота Бора стала еще одним триумфом его теории.

Но попытки применить теорию к неионизированному атому гелия — системе с двумя электронами — и к более сложным атомам натолкнулись на непреодолимые математические трудности.

Эти трудности в существенной мере преодолел теоретик старшего поколения Зоммерфельд. Он ввел в модель Бора наряду с круговыми орбитами более сложные эллиптические орбиты электронов. Это позволило ему вывести расчетным путем комбинационный принцип, полученный Ритцем из простого сопоставления данных опыта. Затем Зоммерфельд, оценив скорости движения электронов по их орбитам, установил, что они столь велики, что для расчетов нужно применять теорию относительности Эйнштейна.

Так он смог объяснить существование многих спектральных линий, не входивших в известные спектральные серии. Оказалось, что они возникают вследствие того, что эллиптические орбиты в соответствии с требованиями теории относительности вращаются вокруг ядра так, что электрон движется не по замкнутому эллипсу, а по своеобразной бесконечной розетке. Впрочем, и после усовершенствования теория была слишком сложной, а главное — не все ее предсказания согласовывались с опытом.

Постепенно у физиков крепло сознание необходимости радикальных перемен.

По закону случая

Если будущий историк захочет «установить, когда именно ученые, более двух тысячелетий проникавшие в сущность света и атомов, сделали первый непосредственный шаг к лазерам, он, несомненно, снова вспомнит о тучных годах.

В 1917 году Эйнштейн сделал шаг, последствия которого он еще не мог предвидеть. Шаг заключался в применении к атому Бора того статистического подхода, который сам Эйнштейн и польский ученый Смолуховский применили к расчетам таинственного броуновского движения — безостановочной пляске мельчайших частиц.

Эйнштейн заметил, что акты излучения и поглощения света должны подчиняться таким же вероятностным закономерностям, как радиоактивный распад. Каждый единичный акт непредсказуем и случаен, но в среднем проявляются четкие закономерности, соответствующие объективным законам природы.

Он предположил, что в атомах, не подвергающихся внешним воздействиям, электроны переходят из состояний с более высокой энергией в состояния с более низкой энергией со вполне определенной вероятностью, обусловленной строением атома. Интенсивность излучения, связанного с такими спонтанными — самопроизвольными — переходами, пропорциональна числу атомов, находящихся в состоянии с высокой энергией, — возбужденных атомов.

Если же атомы находятся в поле излучения, частота которого совпадает с одной из боровских частот, то вероятность электронного перехода, связанного с излучением или поглощением фотона этой частоты, пропорциональна интенсивности поля.

Эти два предположения имели два важнейших следствия.

Из них непосредственно вытекает формула Планка для излучения «черного тела», устранившая опасность ультрафиолетовой катастрофы». Это давало уверенность в правоте Эйнштейна.

Но второе следствие настораживало.

Из предположений Эйнштейна неизбежно получалось, что фотон уносит из атома не только энергию, но и импульс; что элементарный акт излучения света не может быть описан сферической волной. Так в науку вновь вошла необходимость объединения волновых и корпускулярных свойств света, ибо теперь фотоны, обретя импульс, опять уподобились частицам. Теперь в физику по-настоящему вторглись законы случая и их нельзя стало рассматривать просто как путь упрощения слишком громоздких вычислений в задачах о множестве частиц. Вероятностные законы оказались связанными с элементарными единичными актами. Лишь много позднее выяснилось, как все это связано с лазерами. Но прежде в науке должно было произойти много важных событий.

Три шедевра

Был 1911 год. В науку входил один из интереснейших умов. Луи де Бройль начал свою самостоятельную жизнь с получения степени бакалавра, а затем лиценциата литературы по разделу истории. Но его влекла деятельность, которой посвятил себя его брат. И вот через брата Луи знакомится с докладами, обсуждавшимися на физическом конгрессе. Доклады были посвящены квантам. Кванты решили судьбу юноши.

Начал он с того, что стал работать в лаборатории своего брата. Первые его труды посвящены рентгеновскому излучению и фотоэффекту. Истории было суждено прервать своеобразный старт — началась первая мировая война. Историк-физик-солдат пять лет отдает армии. А вернувшись в 1919 году из армии, он полностью подпадает под обаяние эйнштейновской теории световых квантов. Его подхлестнуло именно то, что маститым немецким физикам казалось подозрительным в дерзкой теории.

Эйнштейн и не претендовал на то, чтобы объяснить при помощи квантов появление цвета в тонких пленках — например, радужной окраски разлитой по воде нефти — и других интерференционных явлений. Если считать, что свет — только частицы, этого не объяснишь. Он слишком глубокий физик, чтобы пытаться так делать. То была бы грубая работа.

Творец световых квантов оставлял эту задачу волновой оптике. Ей было легче, так как исходила она из того, что свет — волна. Но однобокость каждой из теорий не пугала Эйнштейна. Он считал такую двойственность закономерной и лежащей в основе природы света. В одних условиях свет существует как непрерывная волна, а в других он не менее реально выступает как поток квантов, которые позднее получили название фотонов.

Эйнштейн был одинок в своем подходе к природе света. Даже впоследствии, когда он после создания теории относительности был поставлен рядом с Ньютоном, квантовая теория света осталась непонятой и забытой. Она помогла Бору в создании теории атома, но и это не обеспечило ей признания. Сам Эйнштейн, поглощенный все более трудными задачами, возникавшими по мере развития его основного труда, не возвращался к этим работам.

Луи де Бройль подхватил идеи Эйнштейна. Еще в ранней молодости его поразила аналогия уравнений, управляющих движением волн и поведением сложных механических систем. Теперь же непостижимое появление целых чисел в правилах, позволяющих вычислять орбиты атома водорода, навело его на мысль о родстве этих правил с законами волнового движения, в которых постоянно возникают простые целые числа.

Руководствуясь идеями Эйнштейна, в частности его соображениями о связи массы и энергии, вытекающими из теории относительности, де Бройль проделал для частиц работу, обратную той, которую Эйнштейн провел для волн света. Эйнштейн связал электромагнитные волны с частицами света; де Бройль связал движение частиц с распространением волн, которые он назвал волнами материи. В конце лета 1923 года в «Докладах Французской академии наук» появились три статьи, три шедевра, в которых были заключены основные принципы новой волновой механики.

А в докторской диссертации идеи волновой механики были развиты и отшлифованы так тонко, что жюри знаменитой Сорбонны, в состав которого входили такие корифеи французской науки, как Поль Ланжевен и Жан Перрен, без колебаний оценило ее «как бриллиант первой величины».

Математические рецепты

Через год двадцатипятилетний геттингенец Вернер Гейзенберг опубликовал свою знаменитую матричную механику. Она была удивительным порождением интуиции одного ученого и в известном смысле освобождала других от необходимости... думать. Основной труд уходил на освоение непривычных математических методов. Дальше все шло удивительно просто. Нужно было записать условия очередной задачи в символической матричной форме (для этого, конечно, нужно поломать голову). Но дальше можно действовать по раз навсегда разработанным правилам. В конце этой почти механической работы возникало решение. Разглядеть его среди леса формул всегда помогал опыт.

Молодой профессор из Цюриха Эрвин Шредингер весной 1926 года прорубил еще одну просеку в дремучем лесу микромира. Шредингер получил замечательное уравнение, известное теперь под названием волнового. Он показал, что в сложных случаях, когда в процессе участвует сразу много частиц, соответствующая волна, описывающая их движение, становится очень сложной. Она уже не помещается в пределах обычного трехмерного пространства. Для ее описания нужно вообразить пространство со многими измерениями!

Теперь в физику микромира прочно вошло абстрактное многомерное пространство, дотоле бывшее многолетней вотчиной классической физики.

Так в результате вдохновенной работы де Бройля, Гейзенберга и Шредингера родилась новая квантовая механика — удивительное, не совсем понятное, заряженное математической взрывчаткой оружие для дальнейших походов в микромир.

В преодоление трудностей, возникавших на пути триединой теории, включались все новые силы. Но главное направление здесь вело не к лазерам, а к атомной бомбе и атомной электростанции. Поэтому мы оставим этот путь и вернемся назад, чтобы проследить за развитием других идей, имеющих непосредственное отношение к нашей теме.

Шаг назад, скачок вперед

Отступим к началу нашего века, когда в науку входил юноша из Одессы Леонид Мандельштам.

В эти столь бурные годы Мандельштама привлекли работы Планка, стремившегося понять, почему свет, проходящий через прозрачную, незамутненную среду, ослабляется. Причиной могло быть только рассеяние. Но что может рассеивать свет в чистом, однородном газе?

И как быть с опытами, безупречными опытами, с удивительной точностью подтверждавшими ранее господствующую теорию рассеяния? Все в ней представлялось бесспорным и как бы протестовало против вмешательства.

Мандельштама не смутило совпадение результатов опытов с прежней теорией. Об одном из таких опытов он написал в 1907 году: «Это совпадение должно рассматриваться как случайное».

Целым рядом работ Мандельштам показал, что беспорядочное движение молекул не делает газ однородным. В реальном газе всегда имеются мельчайшие разрежения и уплотнения, образующиеся в результате хаотического теплового движения. Вот они-то и приводят к рассеянию света, так как нарушают оптическую однородность воздуха.

Мандельштам писал: «Если среда оптически неоднородна, то, вообще говоря, падающий свет будет рассеиваться и в стороны».

Много позже, в 1917 году, Мандельштам и независимо от него французский ученый Леон Бриллюэн задались вопросом о том, как же происходит рассеяние света в прозрачных однородных жидкостях и твердых телах, плотность которых неизмеримо больше плотности воздуха.

Оказалось, что и здесь большую роль играют флуктуации плотности, подчиняющиеся законам, родственным тем, которые приводят к движению броуновские частицы.

Но в жидкостях и твердых телах, которые физики объединяют обобщающим понятием — конденсированные среды, в процесс рассеяния света вмешивается новый фактор, корни которого простираются до 1820 года, когда французы Дюлонг и Пти установили замечательный факт равенства удельной теплоемкости всех твердых тел. Попытки объяснить эту закономерность дали толчок многим далеко идущим исследованиям. Но причина столь удивительного равенства так и осталась неясной, и опытный факт со временем превратился в закон Дюлонга и Пти. Лишь более чем через половину века цюрихский профессор Вебер обнаружил, что удельные теплоемкости алмаза, графита, бора и кремния резко отклоняются в меньшую сторону от закона Дюлонга и Пти. Он же установил, что повышение температуры уменьшает обнаруженное им отклонение.

Эйнштейн, в студенческие годы слушавший лекции Вебера, не мог остаться равнодушным к его открытию. Он представил себе атомы твердых тел колеблющимися вокруг устойчивых положений равновесия, определяемых взаимодействием их электрических полей. Свойства таких атомных систем напоминают в общих чертах поведение системы грузиков, связанных пружинками. Эйнштейн стремился во всех случаях описать сложную систему при помощи наиболее простых моделей и наиболее простых формул, лишь бы они воспроизводили существенные черты реальных явлений. Этот путь и здесь привел его к успеху. Применив к своей модели формулы Планка, он смог объяснить наблюдения Вебера.

Впоследствии Дебай развил работу Эйнштейна и показал, что тепловые колебания твердых тел имеют ту же природу, что и звуковые колебания, но частоты их занимают несравненно больший диапазон, чем слышит наше ухо. То были ультразвуковые и гиперзвуковые колебания, много позже освоенные техникой. Но звуковые волны связаны с сжатием и разрежением, с изменением плотности вещества. Если эти волны порождаются тепловыми движениями, то их наложение приводит к хаотическим изменениям, к флуктуациям, плотности. Достаточно было осознать это, и механизм рассеяния света в конденсированных средах становился ясным. Теперь этот процесс известен как рассеяние Мандельштама — Бриллюэна. Он приобрел новое значение после создания лазеров.

Многообещающая находка

Много лет спустя, в 1925 году, став заведующим кафедрой Московского университета, Мандельштам продолжил исследования рассеяния света совместно с искусным экспериментатором Григорием Самуиловичем Ландсбергом.

Результаты совместной работы были неожиданны и необычайны. Ученые обнаружили совсем не то, что ожидали, не то, что было предсказано теорией. Они открыли совершенно новое явление. Но какое? И не ошибка ли это? В рассеянном свете появилась целая комбинация частот, которых не было в падающем на вещество свете.

На фотографиях спектра рассеянного света упорно появлялись слабые и тем не менее вполне явные линии, свидетельствующие о наличии в рассеянном свете «лишних» частот. Многие месяцы ученые искали объяснение этому явлению. Откуда в рассеянном свете появились «чужие» частоты?

И настал день, когда Мандельштама осенила изумительная догадка. Это было удивительное открытие, то самое, которое и теперь считается одним из важнейших открытий XX века.

Глубокая интуиция и ясный аналитический ум Мандельштама подсказали ученому, что обнаруженные изменения частоты рассеянного света не могут быть вызваны теми межмолекулярными силами, которые выравнивают случайные неоднородности плотности воздуха или вызывают ультразвуковые — дебаевские — волны в твердых телах. Ученому стало ясно: причина, несомненно, кроется внутри самих молекул вещества, и явление вызвано внутримолекулярными колебаниями атомов, образующих молекулу. Такие колебания происходят с гораздо более высокой частотой, чем те, что сопровождают образование и рассасывание случайных неоднородностей среды. Вот эти-то колебания атомов в молекулах и сказываются на рассеянном свете. Атомы как бы метят его, оставляют на нем свои следы, зашифровывают дополнительными частотами.

Таким образом, для объяснения нового явления, которое получило название «комбинационное рассеяние света», достаточно было теорию молекулярного рассеяния, созданную Мандельштамом, дополнить данными о влиянии колебаний атомов внутри молекул.

Впоследствии из этого открытия была извлечена огромнейшая польза, оно получило ценное практическое применение.

В наши дни комбинационное рассеяние стало основой одного из типов лазеров.

Намек

Мы уже знаем, как Эйнштейн сделал первый шаг к лазерам. Но в то время никто не понял, куда ведет тропинка, на которую он ступил. Не понял этого и он сам. Его интересовало другое. Он стремился лишь к тому, чтобы устранить назревшее противоречие между оптикой и термодинамикой.

Оптикам и до Эйнштейна было известно, что самопроизвольное излучение атомов не зависит от внешних условий, а определяется только свойствами атомов. Напротив, поглощение растет вместе с интенсивностью падающего света.

Это был чисто теоретический вывод. Вынужденное излучение не поддавалось наблюдению: его маскировало более сильное поглощение.

Советский физик Валентин Александрович Фабрикант обратил внимание на то, что вынужденное излучение ненаблюдаемо только потому, что в обычных условиях этому препятствует закон Больцмана. В соответствии с ним атомы предпочитают находиться в состояниях с малой энергией, подобно тому, как молекулы воздуха скапливаются в нижних слоях атмосферы. Внизу воздух плотнее, с высотой он становится все более разреженным.

Так и атомы. В состояниях с малой энергией их много, в верхних состояниях меньше. А так как, по теории Эйнштейна, внешнее электромагнитное поле с равной вероятностью побуждает единичный атом поглотить фотон и повысить свою энергию или испустить фотон и избавиться от избыточной энергии, то результат определяется законом Больцмана: в обычных условиях число атомов, способных к поглощению, преобладает.

Значит, сказал Фабрикант, нужно создать необычные условия, в которых закон Больцмана уже не властен. Для этого необходимо нарушить тепловое равновесие среды, и нарушить так сильно, чтобы атомов с большой энергией стало больше, чем атомов с малой. Тогда такая среда вместо поглощения света будет усиливать его...

Шли годы. Началась вторая мировая война. Гитлеровцы предательски напали на нашу Родину. Народ бросил все силы на борьбу с врагом. Вместе со всеми, конечно, были и ученые.