Глава 11 «Предновогодняя реабилитация Кузьминского»
Глава 11 «Предновогодняя реабилитация Кузьминского»
В конце ноября 1993 года мне в редакцию журнала неожиданно позвонил знакомый полковник из аппарата Начальника Вооружения Вооруженных Сил РФ. Он сообщил, что из НИИДАРа к ним пришло приглашение на научно-техническую конференцию. Не осмыслив до конца услышанное, я в ответ хмыкнул в трубку, мол, ну и что, мало какие конференции проходят в этом институте.
– Да ты не перебивай, — ответил полковник, — а вначале прослушай название конференции.
Информация меня удивила и озадачила. Конференция называлась «Становление и развитие отечественной загоризонтной локации». В приглашении было указано, что посвящена она памяти главного конструктора направления Кузьминского Франца Александровича.
– Ну и дела, — примерно так тогда я подумал, — ведь еще три года назад в российской демократической прессе публиковались буквально клеветнические материалы о создателях боевой системы ЗГРЛС. От Франца Кузьминского отвернулись в Минобороны, Минрадиопроме, Правительстве. Он умер, так и не смог никому ничего доказать. Ученому и конструктору не поверили. А спустя всего два года после его кончины в НИИДАРе организуется официальная научно-техническая конференция по реабилитации ученого, на которую приглашаются представители всех вышеуказанных инстанций. Не фарс ли это?
– А когда будет проходить эта конференция? — спросил я своего знакомого.
– В приглашении сказано, что в декабре, — ответил полковник и добавил, — а тебя не приглашают? Ведь ты один в период травли в государстве загоризонтной локации выступил в печати в ее защиту.
Однако мне приглашение на конференцию не присылали.
– Всякое бывает, — подумал я про себя, — может, в организационной суете забыли, или просто не учли мою скромную персону?
Долго не раздумывая, позвонил по телефону в приемную директора НИИДАРа Александра Александровича Трухманова. Секретарша выслушала мою просьбу соединить с директором, спросила, по какому поводу я к нему обращаюсь, и попросила немного подождать. Видно проконсультировавшись с кем-то, оно сказала, что директор очень занят и мне позвонят относительно приглашения на конференцию. Однако никто так и не позвонил. Жаль, конечно, что не побывал на той конференции. Но что поделаешь, раз в институте посчитали целесообразным меня не приглашать. Это право организаторов. Уже в сердцах махнул рукой на эту конференцию и на НИИДАР в придачу. По горло было других забот. Однако спустя три месяца мне позвонил охранник из вестибюля здания «Красной Звезды» и сказал, что мне какая-то женщина принесла пакет. На нем написано, что это материалы конференции из НИИДАРа. Действительно, в пакете оказались семь объемных материалов с выступлениями военных, ученых на научно-технической конференции, посвященной памяти главного конструктора Франца Александровича Кузьминского. Откровенно говоря, чтение этих материалов особого удовольствия не доставило. Не зря говорится в народе, что дорога ложка к обеду. Этим материалам сразу после конференции цены бы не было. Одно выступление заместителя председателя научного совета по комплексной проблеме распространения радиоволн академика Мигулина могло бы заставить вздрогнуть клеветников ЗГРЛС от прессы. На основании этих выступлений, самого факта проведения конференции, на которой поднимались на щит достижения в отечественной загоризонтной радиолокации, уже было затоптанные лживыми публикациями, реабилитировалось после травли имя главного конструктора Франца Кузьминского, можно было действительно написать объективный материал о великом научном поиске, о людях, о конструкторе, деятельность которого достойна самых высших похвал и наград. Но организаторы конференции посчитали почему-то, что лучше ее провести кулуарно. Вполне вероятно, что на это были какие-то веские причины. Например, в приказе директора НИИДАР во втором пункте указано создать оргкомитет из 9 человек. А в пункте 4 говорится: «члену оргкомитета А.С. Пальцеву в обеспечение работы конференции разработать план режимных мероприятий по плану конференции». Ну, а режим штука весьма своеобразная, которая определена многими законами и инструкциями по государственной и служебной тайнам. Возможно, что и по этой причине конференция была для узкого круга специалистов.
Однако оргкомитету надо отдать должное в определенной смелости при подготовке конференции. Ведь с момента открытой травли боевой системы ЗГРЛС и непосредственно главного конструктора прошло всего пара лет. Из НИИДАРа материалы рассылались по многим инстанциям, в которых весьма неоднозначно, а порой и одиозно в тот период оценивали создание системы ЗГРЛС и работу Франца Кузьминского. Влиятельные силы вполне могли прихлопнуть эту конференцию, или организовать в прессе еще большую травлю создателей боевых ЗГРЛС. Однако оргкомитет не побоялся в рассылаемом информационном сообщении отметить:
«1. Планируемая научно-техническая конференция посвящается светлой памяти крупного ученого и организатора нового направления в отечественной радиолокации — главному конструктору Кузьминскому Францу Александровичу.
Бессменно находясь на посту главного конструктора, Франц Александрович посвятил себя созданию загоризонтных радиолокационных средств, научному обоснованию их ТТХ, управлению процессами производства, развертывания загоризонтных систем на объектах, всесторонним испытаниям и фундаментальным исследованиям явлений, связанных с получением радиолокационной информации на межконтинентальных дальностях.
Организованные и проведенные Францем Александровичем блестящие эксперименты по лоцированию за горизонтом различных объектов не имеют известных нам аналогов в мировой науке и до настоящего времени служат базой и источником научных, конструкторских и технологических изысканий и работ продолжателей и учеников главного конструктора.
2. Цели конференции
Обсудить отечественный опыт создания загоризонтных систем, результаты экспериментальных исследований явлений, сопутствующих процессам сверхдальней локации космических, воздушных и морских объектов.
Обобщить фундаментальные научные результаты, полученные отечественными учеными и инженерами в ходе создания загоризонтных радиолокационных средств и наметить пути решения научных проблем, не нашедших своего решения до настоящего времени.
Поделиться воспоминаниями о совместной работе и трудах с главным конструктором направления Кузьминским Ф.А».
После окончания конференции 24 декабря 1993 года ее участники в 16.00 выехали на Троекуровское кладбище в Москве и возложили цветы на могилу Кузьминского Ф.А. Это отмечено в распорядке работы научного мероприятия. Но об этом я узнал только спустя несколько месяцев. Наверное, на могиле ученого и конструктора произносились слова о его научной и технической одаренности, смелости и вообще выдающимся способностям. Может быть, звучали слова, что без таланта Франца Кузьминского Россия не добилась бы таких успехов в новой и перспективной области радиолокации. И это по праву. Но если бы мне тогда хотя бы сообщили о поездке на кладбище, то оставил бы в стороне текущие дела и приехал бы посмотреть на то, как и какие воздаются почести Кузьминскому. Этому бы не помешал даже особый, кулуарный режим проведения конференции. Может быть, удалось сфотографировать, как опальный главный конструктор реабилитируется всего через два года после смерти. В России ведь уже стало национальной традицией так поступать с наиболее талантливыми и одаренными соотечественниками.
Так что в тот период материалы научно-технической конференции в НИИДАРе без особой пользы просто пополнили мой архив по ЗГРЛС. А вот спустя 14 лет они вновь оказались на рабочем столе, и я стал решать, как их использовать в документальной книге-расследовании. Конференция видно не случайно ее организаторами была позиционирована, как научно-техническая. Ученые народ дотошный, любящий опираться на достоверные факты, математические выкладки. В переданных мне отпечатанных на стандартных листах бумаги выступлениях на той конференции буквально в каждом абзаце формулы, цифры, диаграммы, научные термины. Не специалисту в них трудно разобраться. Эти материалы скорее подошли бы для научно-технического издания. Думается, не стоит научными выкладками и формулами перегружать повествование о трагедии и триумфе отечественной загоризонтной локации. Поэтому решил размещать в книге некоторые выступления на той уже ныне забытой конференции в сокращенном виде, не влезая в дебри научно-технических терминов и выводов. Тем не менее, и эти сокращенные материалы весьма интересны потому, что показывают глубину научного поиска в неизученной области знаний.
«Радиофизические парадоксы загоризонтной локации»
В. Акимов, Ю. Калинин, В. Стрелкин, Э. Шустов «В загоризонтной локации на больших дальностях, соизмеримых с радиусом Земли, плазменных следов стартующих баллистических ракет происходит структурно простая последовательность радиофизических эффектов. Ее несколько условно можно разбить на относительно независимые этапы: излучение первичной волны, распространение радиоволн вдоль по трассе, рассеяние радиоволн на предполагаемой цели и на других неоднородностях трассы (пассивные помехи), распространение радиоволн в обратном направлении, регистрация сигнала на фоне сигналов от других радиотехнических средств коротковолнового диапазона (активные помехи). Эта радиофизическая картина была подтверждена многолетними исследованиями, как отдельных этапов процесса, так и реализацией процесса в целом. При этом для каждого из перечисленных этапов были построены частные радиофизические модели и проведены частные эксперименты.
При конструировании загоризонтных локаторов, предназначенных для работы на сверхдальних трассах, предполагается использовать эффект Доплера для того, чтобы осуществить селекцию движущейся цели (избавиться от мощных пассивных помех), подобно тому, как это делается в традиционной надгоризонтной локации. На ранних этапах развития загоризонтной локации проводились специализированные модельные газодинамические исследования структуры высотного следа баллистической ракеты. Исследования подтвердили опубликованные в мировой научной литературе результаты, состоящие в том, что след состоит из ряда фрагментов (головная ударная волна, участок расширения, зона турбулентного перемешивания). Из них часть имеет более высокую плотность заряженных частиц, чем окружающие среда-ионосфера, а часть — более низкую.
Более сложной оказалась задача расчета характеристик взаимодействия радиоволн с различными фрагментами следа. Фактически эта задача так и не была решена с достаточной для загоризонтной локации полнотой. Это обусловило проведение масштабных экспериментов по локации следа баллистической ракеты, как в зоне прямой видимости, так и на дальности одного скачка. По техническим причинам данные эксперименты осуществлялись при таком взаимном расположении средств локации и следа ракеты, которое соответствует облучению движущейся ракеты сзади. При этом радиоволновые пакеты прежде, чем достичь областей следа примыкающих к корпусу самой ракеты и, следовательно, движущихся со скоростью самой ракеты, проходили через более далекие области, покоящиеся относительно ионосферы или движущиеся в направлении противоположном движению корпуса ракеты. Тем не менее, спектральный анализ отраженных сигналов свидетельствует о том, что в спектре отраженного сзади сигнала существенная часть принадлежала компонентам, чей сдвиг по частоте соответствовал скорости движения самой ракеты. Ожидалось, что при переходе ко второму этапу экспериментов, в которых след ракеты с больших дальностей лоцировался бы спереди. Такое наличие в спектре отраженного сигнала компонент сдвинутых по частоте на величину, определяемую скоростью движения корпуса ракеты навстречу фронту первичной волны, сохранится. Однако этого не произошло. Парадокс ситуации состоял в том, что скорости, определяемые двумя разными методами — по доплеровскому смещению несущей радиолокационного сигнала и по изменению задержек сигнала — оказались неравны. Для ситуаций, в которых фаза сигнала имеет единственное значение при любых значениях частоты и времени, два упомянутых метода определения скорости цели соответствуют двум различным вторым смешанным производным фазы, как функции частоты и времени. Неравенство друг другу смешанных производных представляет собой формально-математическое выражение парадокса неравенства скорости цели определяемой по несущей и по огибающей радиолокационного сигнала.
Почему при локации из задней полусферы летящей ракеты рассеянная волна приобретает сдвиг частоты, соответствующей скорости движения самой ракеты, а при локации с передней полусферы сдвиг частоты существенно меньше? Ответ на этот вопрос можно было бы найти, предположив наличие разной роли поверхностного и объемного рассеяния радиоволн при различных ракурсах облучения следа. Однако эти гипотезы не смогут объяснить отсутствия подобного различия в скорости изменения задержки импульсов.
В заключение следует отметить, что целый ряд радиофизических парадоксов связан с нелинейными эффектами скачковых и скользящих волновых пакетов. Сигналы кругосветного эха также обладают рядом свойств, которые с трудом поддаются интерпретации. Можно смело утверждать, что отмеченные парадоксы являются, и будут являться мощным стимулом к исследованию свойств радиосигналов на протяженных радиолокационных трассах, включая ситуацию наличия искусственных ионосферных неоднородностей».
«Опытно-теоретический метод оценки характеристик сложных систем вооружения и его применение при решении задач загоризонтного обнаружения»
А. Шаракшанэ доктор технических наук, профессор, лауреат Государственной премии, генерал-майор в отставке. С. Козлов, доктор физико-математических наук, старший научный сотрудник, подполковник запаса. «Во второй половине 50-х годов на вооружение страны стали предлагаться некоторые системы, которые в дальнейшем получили название сложных. Наиболее типичными из них являются системы противоракетной обороны (ПРО) и предупреждения о ракетном нападении (СПРН). Главными отличительными чертами таких систем от других были невозможность их натурных испытаний в полном объеме на соответствие требованиям тактико-технического задания (ТТЗ), большая сложность в построении подобных систем и практически автоматизированное принятие решений (технических, политических). Все это потребовало разработки принципиально новых подходов к испытаниям таких систем и оценке их тактико-технических характеристик (ТТХ).
Первые идеи в данном направлении были высказаны и разработаны в управлении анализа одного из казахстанских полигонов Минобороны СССР, которое возглавлял в те годы полковник А. Шаракшанэ. Основное внимание уделялось решению двух вопросов: оценке характеристик сложных автоматизированных систем вооружения и проверке правильности работы программно-алгоритмического комплекса. Исследования проводились в интересах систем ПРО («Алдан», А-35) в период 1957-1961 гг. Большую роль в данной работе сыграли Г. Кононенко, И. Железнов, Ф. Евстратов, В. Васенев. В дальнейшем новый подход к испытаниям сложных систем авторы назвали опытно-теоретическим.
В 1961 году создается Специальный НИИ МО. Его основными задачами были разработка методологии испытаний и прием на вооружение систем ПРО и СПРН. Развитие и совершенствование опытно-теоретического метода связано именно с этим институтом, которым руководил генерал-лейтенант, доктор технических наук, профессор И. Пенчуков. В ЦНИИ были окончательно разработаны и обоснованы принципы отработки математических моделей.
Со временем в ЦНИИ начало развиваться новое направление опытно-теоретического метода, связанное с созданием комплексных испытательных моделирующих стендов (КИМС) для разных средств и элементов систем ПРО и СПРН. В отличие от испытаний, основанных на использовании главным образом математических моделей, КИМСы должны были применяться только на самих боевых узлах с полным использованием аппаратуры и комплекса программно-реализованных алгоритмов узла. Главная задача, решаемая с помощью КИМСов — имитация целевой обстановки и сигналов от целей, что позволяло в конечном счете вести испытания в реальном масштабе времени с максимальным привлечением технических средств объектов.
Новая проблема, возникшая в ЦНИИ в начале 70-х годов, была связана с загоризонтной радиолокацией (ЗГРЛС) стартов баллистических ракет с территории США (в рамках создания СПРН). Загоризонтная радиолокация, предназначенная для обнаружения запусков БР, когда они выходят на высоты более 100 км, безусловно, должна была сыграть положительную роль в рамках общей системы ПРН. Работа системы ЗГ РЛС предусматривалась в коротковолновом диапазоне радиоволн. Причем сама система «подстраивалась» под непрерывно изменяющиеся условия распространения радиоволн. Основные особенности использования опытно-теоретического метода относительно ЗГРЛС заключались в необходимости решения следующих задач:
– определения объема и условий исходных данных для последующей калибровки математических моделей с учетом значительной зависимости ТТХ от геофизических условий;
– обоснование принципов переноса экспериментальных оценок, полученных для РЛС в г. Николаеве, на боевые трассы;
– обоснование принципов моделирования массового старта БР с территории США;
– оценка достоверности результатов моделирования по определению ТТХ ЗГРЛС.
Создание теоретической модели помеховой и радиофизической обстановки для ЗГРЛС КВ-диапазона представляется весьма сложной задачей. Поэтому был использован КИМС, реализуемый на вычислительных средствах самих боевых объектов, который давал реальный помеховый и радиофизический фон. В конечном счете, были разработаны два вида моделей: автономная математическая модель, использование которой проводилось в вычислительном центре Специального НИИ Минобороны; КИМС, внедренный на узлах в городах Чернобыль и Комсомольск-на-Амуре. Достоверность результатов моделирования определялась с учетом трех факторов: адекватность созданных математических моделей описываемым физическим явлениям и процессам; точность исходных данных, включая самые разнообразные экспериментальные результаты, формируемые до начала испытаний; количеством реализаций на моделях.
Создание всего комплекса моделей потребовало использование последних достижений науки того времени в различных областях знаний. В этом отношении необходимо отметить коллективы ученых ИЗМИРАН (директор академик РАН Мигулин В.В.), НИРФИ (директор доктор физико-математических наук, профессор Гетманцев Г.Г.), НИИДАР (директор и главный конструктор ЗГРЛС Кузьминский Ф.А.), ИПГ (директор академик Федоров Е.К.). Среди ученых различной ведомственной принадлежности, внесших заметный вклад в решение проблемы в целом, следует упомянуть Шустова Э.И., Евстратова Ф.Ф., Козлова СИ., Васенева В.Н., Дубровского Н.Ф., Карлова М.Н., Лидлейна Г.А., Калинина Ю.К., Стрелкина В.Н., Ручкина А.Н., Алебастрова В.А., Акимова В.Ф., Заморина И.М., Богданова О.М., Когана В.А., Ватолло В.В.
Поученные результаты по натурным экспериментам, а также при проведении моделирования позволили, в конечном счете, с достаточной достоверностью оценить ТТХ созданных узлов ЗГРЛС по обнаружению запусков БР с территории США. Не останавливаясь на деталях и частностях, здесь мы отметим лишь несколько, на наш взгляд, наиболее важных результатов:
1. Оба боевых узла трудно использовать в СПРН с целью обнаружения одиночных и групповых стартов БР.
2. По своим ГФУ и РФУ чернобыльский узел хуже восточной РАС, так как часть трассы распространения радиоволн проходит через субполярную ионосферу.
3. Боевой узел в г. Комсомольске-на-Амуре может быть достаточно надежно использован в СПРН в качестве независимого от всех остальных средств системы источника информации о массовом налете БР. В этом плане физические и технические принципы, положенные в основу разработки ЗГРЛС, следует признать оправдавшими себя. В ряде случаев будет наблюдаться ухудшение некоторых ТТХ узла из-за состояния ионосферы по трассе распространения КВ-радиоволн, которая в целом характеризуется как среднеширотная».
«Исследования искусственно модифицированной ионосферы на комплексе загоризонтной радиолокации в г. Николаеве».
В. А. Алебастров, д.ф.-м.н., директор Украинскогорадиофизического института
A.M. Куликов, руководитель группы Украинского
радиофизического института
Ю.А. Романовский, к.ф.-м.н., старший научный сотрудник,
зав. отд. Института прикладной геофизики
имени академика Е.К. Федорова
«В настоящее время для исследований и мониторинга ионосферы используется широкий круг радиофизических методов, основанных на взаимодействии КВ-УКВ излучений с ионосферной плазмой. К наиболее распространенным методам относятся методы вертикального и наклонного КВ-зондирования, реализованные в аппаратурных комплексах ионосферных станций, с помощью которых получен основной объем имеющихся данных о состоянии и регулярных вариациях ионосферы. Возможности этих исследований существенно ограничиваются невысокими техническими характеристиками этих средств.
В то же время, в последние годы возникла необходимость изучения нестационарных процессов в ионосфере, тонкой структуры ионосферной плазмы, локальных неоднородных образований и других явлений и процессов, которые не могут быть исследованы в полной мере с помощью указанных комплексов. Это, в частности, относится к исследованиям искусственно модифицированной ионосферы, свойства и характеристики которой могут существенно изменяться при воздействии мощного радиоизлучения, запусков изделий ракетно-космической техники, при проведении в ионосфере экспериментов активного типа и др.
Эффективным средством для осуществления исследований нестационарных локальных явлений и образований в естественной и искусственно модифицированной ионосфере могут быть станции загоризонтной радиолокации (ЗГРЛС), обладающие мощным потенциалом и высокими характеристиками системы приема и обработки сигнала. Это, в частности, было убедительно продемонстрировано при проведении с помощью ЗГРЛС в г. Николаеве исследований ионосферы в естественных условиях, а также при воздействии мощного КВ-радиоизлучения и мощных наземных взрывов.
Авторами и их коллегами в период 1987-90г.г. с использованием указанной ЗГРЛС была выполнена программа исследований модифицированной ионосферы при создании искусственных плазменных образований (ИПО). Метод ИПО широко используется для изучения динамических и плазменных процессов в ионосфере. В основном ИПО применяются в качестве трассеров процессов в ионосфере при наблюдениях оптическими методами. При этом теряется значительная часть информации об особенностях изменений ионосферы, вызванных созданием ИПО, и процессах в ионосфере и в самом ИПО, не наблюдаемых оптическими методами. Зондирование ионосферы и ИПО с помощью ЗГРЛС позволяло получать дополнительную информацию о модификации ионосферы.
Основные задачи программы исследований состояли в следующем:
– анализ спектрально-энергетических характеристик сигналов обратного рассеяния (СОР) и сигналов возвратно-наклонного зондирования (ВНЗ);
– изучение по измерениям СОР и ВНЗ структуры и динамики ИПО на разных высотах и при различных способах их создания;
– исследования взаимодействия ИПО с ионосферой;
– изучение особенностей взаимодействия мощного КВ-излучения с «сильными» плазменными неоднородностями;
– анализ эффективности диагностики и контроля методами КВ-зондирования искусственной модификации ионосферы.
В программе экспериментов осуществлялись комплексные исследования ИПО, которые проводились с использованием бортовых измерительных средств, обеспечивающих прямые измерения параметров ИПО, а также с привлечением наземных оптических и радиофизических измерительных комплексов. В экспериментах ИПО создавались с помощью пиротехнических генераторов и плазменных ускорителей стационарного и импульсного типа, которые устанавливались на метеорологических ракетах MP-12 и МР-20, запускавшихся с полигона Капустин Яр и с борта научно-исследовательского судна в Норвежском море.
В активных экспериментах, образование ИПО производилось на высотах 130-180 км. При применении пиротехнических генераторов создавались крупномасштабные ИПО — т.н. искусственные ионные облака — с размерами от сотен метров на начальной стадии до десятка километров на заключительной фазе их образования. При использовании стационарных плазменных ускорителей при инжекции плазмы с борта ракеты образовывалось протяженное ИПО вдоль траектории ракеты. В ряде экспериментов для изучения особенностей взаимодействия мощного КВ-радиоизлучения с ИПО на ракете устанавливалось радиоприемное устройство, которое регистрировало излучение станции. В этом случае предусматривалось непрерывное излучение станции на одной из частот.
Особенности характеристик СОР при зондировании искусственных облаков на расстоянии — 1100 км от РЛС в зоне прямой видимости иллюстрируются данными эксперимента с созданием с помощью пиротехнического генератора одного ионного облака, в котором было создано 5 облаков вдоль траектории ракеты. Как следует из этих данных, о возникновении ИПО свидетельствует значительное на 40-50 дб возрастание амплитуды сигнала СОР, причем увеличенные значения СОР регистрируются в течение более 30 минут. Верхнюю временную границу регистрации ИПО определить не удалось из-за преждевременного прекращения зондирования на станции. Амплитудные вариации СОР характеризуются регулярными периодическими замираниями на 10-20 дб, свидетельствующими об изменениях структуры ИПО. Распад облака на множество мелких неоднородностей и его расслоение, обычно хорошо наблюдаемое по данным оптических наблюдений при локации ИПО, на ЗГРЛС проявляется в возникновении квазишумового характера СОР. При образовании в эксперименте нескольких ионных облаков создание каждого облака сопровождается возрастанием амплитуды СОР. Затем происходит уменьшение СОР на ~ 20 дб и этот уровень сигнала поддерживается в течение нескольких десятков минут.
Данные по локации ИПО свидетельствуют также о значительном увеличении СОР при создании ИПО, но и несколько отличающемся характере их изменений по сравнению с экспериментами с искусственными облаками. Важная особенность рассматриваемого эксперимента состоит в том, что наблюдения СОР существенно меньше по времени и СОР исчезает через 10-100 секунд после прекращения инжекции.
Отмеченные особенности СОР регистрировались не только в области «прямой» видимости ИПО, но и на дальностях около 3000 км (Норвежское море) при создании ИПО на нисходящем участке первого скачка КВ-радиоволн. В этом случае амплитуда СОР на 20-30 дб ниже, чем при локации ИПО на полигоне Капустин Яр, однако общий характер изменения сигналов подобен.
Важная информация о взаимодействии ИПО с ионосферой содержится в доплеровских спектрах СОР и ВНЗ. В качестве примера динамики доплеровских спектров СОР получены спектры, зарегистрированные в эксперименте с инжекцией плазменной струи. Ряд характерных особенностей при регистрации доплеровских смещений СОР в этом же эксперименте также наблюдаются. Из приведенных данных можно сделать следующие заключения:
1. После инжекции плазмы в спектрах регистрируется значительное увеличение амплитуды сигнала.
2.При инжекции плазменной струи на высотах h·140 км наблюдаются значительные знакопеременные изменения доплеровской частоты, а также появление «плавающих» максимумов в доплеровских спектрах, указывающих на то, что отражение происходит от фронта плазменной струи, не заторможенной в ионосфере.
3.Вблизи апогея траектории ракеты, когда флуктуации доплеровского смещения сигнала составляют + 10 Гц, отражение радиоволн определяется в основном объемным рассеянием радиоволн на развитой неоднородной структуре ИПО, «вмороженного» в ионосферу.
Доплеровские спектры СОР, зарегистрированные при зондировании искусственных ионных облаков спустя 2-10 секунд после инжекции, характеризуются также значительным увеличением средней амплитуды сигнала и малыми смещениями доплеровской частоты в пределах -Ь 5 Гц. Это указывает на «вмороженность» облаков в ионосферную плазму и перенос их со скоростью дрейфа в ионосфере.
Особенности вариации сигнала локатора, измеряемого на борту ракеты при ее пролете через ИПО, видны, что при «взлете» ракеты в диаграмму направленности. Происходит возрастание сигнала РАС, сопровождаемое его модуляцией. При образовании ИПО регистрируется резкое общее увеличение и возникновение значительных колебаний амплитуды сигнала. Результаты моделирования отмеченного эффекта получены A.M. Насыровым и Н.А. Осиповым. Качественное согласие экспериментальных данных и модельных оценок указывает на сильную дифракцию КВ-радиоволн на ИПО и значительное рассеяние «вперед» радиоволн на неоднородностях ИПО.
Взаимодействие мощных КВ-радиоволн с ионосферой при наклонном зондировании ЗГРЛС приводит к ряду нелинейных эффектов и, в частности, к увеличению МПЧ. Возможным проявлением нелинейных процессов при воздействии мощного излучения ЗГРЛС на ИПО в экспериментах служило заметное увеличение времени существования ИПО, зарегистрированное различными КВ-средствами, по сравнению с теми случаями, когда ИПО не облучалось ЗГРЛС.
Обобщая основные результаты программы исследований ИПО в ионосфере с помощью ЗГРЛС, можно сделать следующие основные выводы:
1. При зондировании ИПО выявлены основные особенности структуры и динамики ИПО, образуемых ниже максимума F-слоя при различных способах их создания.
2. Экспериментальные и модельные оценки взаимодействия мощного КВ-радиоизлучения с ИПО показывают, что при формировании в результате развития неоднородностей происходит интенсивное объемное рассеяние КВ-радиоволн и дифракция радиоволн на неоднородном ИПО.
3. ЗГРЛС является эффективным средством диагностики и контроля искусственной модификации ионосферы на расстояниях до нескольких тысяч километров от пункта нахождения станции.
В заключении авторы отмечают тот интерес, с которым относился к проведенным работам Ф.А. Кузьминский. Его замечания и советы во многом способствовали развитию исследований в этой новой области использования загоризонтной радиолокации. Значительную помощь авторам при организации и проведении исследований, а также при анализе их результатов оказал СИ. Козлов. Исследования по указанной программе стали возможны благодаря совместным усилиям специалистов из различных организаций. Авторы считают своим приятным долгом особо отметить вклад В.А. Иванова, В.М. Ороса, О.М. Ярко, М.Б. Белоцерковского, Н.В. Ветчинкина, И.В. Грыцькива».
«Загоризонтная радиолокация в России и на Украине (История и достижения)».
А.А. Кузьмин, В.А. Якунин, Ф.Ф. Евстратов, Э.И. Шустов,
А.А. Колосов (НИИДАР, г. Москва, Россия), В.А. Алебастров
(УРТИ, г. Николаев, Украина), Ю.И. Абрамович
(ОПУ, г. Одесса, Украина)
I. Поисковые работы
В России первые результаты по обнаружению объектов, находящихся далеко за пределами горизонта, были получены в 1946-1949гг. Н.И. Кабановым при работе методом возвратно-наклонного зондирования с отражением от ионосферы в коротковолновом диапазоне. Комиссия под руководством доктора технических наук А.А. Колосова установила, что устойчивые отражения от неподвижных объектов на расстоянии порядка 2000 км по своей конфигурации достаточно хорошо совпадают с рельефом берегового побережья Турции, на Черном море. Однако на фоне этих отражений выделить слабые сигналы от самолетов в то время не удалось.
Аналогичная попытка обнаружения самолетов была сделана в США в 1949-50гг. Она также закончилась неудачей.
В 1958-60 гг. в СССР была выполнена научно-исследовательская работа «Дуга» (научный руководитель Е.С. Штырен), в которой была научно обоснована возможность загоризонтного обнаружения самолетов на дальности одного скачка (~ 3000 км) и стартов баллистических ракет на дальности двух скачков (~ 6000 км). Были разработаны корреляционно-фильтровые методы выделения сигналов целей с доплеровским смещением частоты на фоне мощных сигналов возвратно-наклонного зондирования (ВНЗ). На специальном полигоне методом электродинамического моделирования были измерены эффективные отражающие поверхности самолетов и корпусов баллистических ракет в диапазоне декаметровых радиоволн применительно к моно — и бистатической схемам радиолокации с разнесением приемника и передатчика от 0° до 180° (руководители работ В.А. Шамшин, Э.И. Шустов). Были измерены также спектры сигналов ВНЗ (руководитель работ Б.С. Кукис).
2. Научно-исследовательские работы
С 1962г. работы по загоризонтной радиолокации были развернуты в Москве в Научно-исследовательском институте дальней радиосвязи (НИИДАР), который с этого времени является головным институтом по данной тематике в пределах бывшего Советского Союза. По мере развертывания фронта исследований к этим работам был привлечен ряд научно-исследовательских организаций: Институт земного магнетизма и распространения радиоволн Академии наук (ИЗМИРАН) во главе с академиком В.В. Мигулиным; Научно-исследовательский радиофизический институт в г. Горьком (Нижний Новгород) во главе с директором Г.Г. Гетманцевым; Московское Высшее техническое училище им. Баумана (ныне Московский Государственный технический университет), руководство работами осуществлял теперешний ректор университета доктор И.Б. Федоров; Харьковский политехнический институт (руководитель работ В.И. Таран); Одесский политехнический институт (руководитель работ доктор наук Ю.И. Абрамович).
Большое внимание к работам по загоризонтной радиолокации проявлял председатель Совета по распространению радиоволн Академии наук СССР академик А.Н. Щукин.
Научно-исследовательские работы по загоризонтной радиолокации в коротковолновом диапазоне в период с 1961 по 1972 гг. велись по двум основным направлениям: обнаружение ионизированного следа стартующих баллистических ракет и их сопровождение на трассах различной ориентации; обнаружение и сопровождение самолетов на среднеширотных трассах.
С 1961 по 1964гг. головной организацией НИИДАР в кооперации с организациями России и Украины в г. Николаеве был создан экспериментальный макет загоризонтного радиолокатора с использованием мощных передатчиков и антенн одного из радиоцентров Министерства связи. На этом макете в 1964 г. получены первые в бывшем Советском Союзе загоризонтные обнаружения стартов баллистических ракет на дальности ~ 3000 км (руководители работ В.А. Шамшин и Э.И. Шустов).
В 1965-72 гг. макет несколько раз модернизировался. В 1967-68 гг. на этом макете впервые были обнаружены самолеты на дальности одного скачка (Э.И. Шустов, О.Б. Сливницкий). А в 1969г. обнаружены запуски с полигона мыса Канаверал космических кораблей «Аполлон» на дальностях 9-10 тыс. км (В.П. Чепига, Ю.К. Калинин).
В 1962-72 г.г. было изготовлено несколько измерительных радиолокационных пунктов в декаметровом диапазоне радиоволн. С помощью этих пунктов в прямой видимости были измерены эффективные отражающие поверхности ионизированных следов баллистических ракет, стартующих с полигонов Байконур, Капустин Яр, Плесецк (И.М. Заморин).
На первых этапах этих работ, до перехода к натурным испытаниям, основное внимание было уделено теоретическому исследованию и математическому моделированию на больших ЭВМ следующих задач:
– определение геофизических условий, при которых состояние ионосферы является наиболее благоприятным для распространения коротких радиоволн на большие расстояния, в том числе и на расстояния, превышающие пределы первого скачка;
– разработка методики определения рабочих частот, оптимальных для данного сезона и времени дня, а также для данных ионосферных условий;
– исследование активных и пассивных помех в коротковолновом диапазоне;
– разработка методики расчета аппаратурного и реального потенциала станции, необходимого для заданной вероятности обнаружения с учетом затухания на трассе.
Кроме того, по специальной программе проводились экспериментальные исследования величины эффективной отражающей поверхности самолетов и ионизированного следа ракет в коротковолновом диапазоне.
Большой объем работ был выполнен по разработке алгоритмов и программ первичной и вторичной обработки, применительно к специфическим условиям загоризонтной радиолокации.
3. Опытно-конструкторские и исследовательские работы
В период 1966-72 гг. был разработан и создан на юге Украины опытный образец загоризонтного радиолокатора. В 1976г. он был существенно модернизирован. Была создана также специальная станция обзора трасс, предназначенная для диагностики ионосферы и исследования сигналов возвратно-наклонного зондирования (ВНЗ). В этой дополнительной станции использовалась кольцевая фазированная антенная решетка и многоканальный компьютеризированный приемник. Сектор наблюдения опытного образца был оборудован измерительными пунктами для исследования условий распространения декаметровых радиоволн. В составе вынесенных измерительных средств были ионосферные станции, измерители кругосветных эхо-сигналов, имитаторы радиолокационных сигналов, высотные измерители поля. Многочастотные высотные измерителя поля размещались на борту вертикально стартующих геофизических ракет. С помощью этих измерителей в 1974-78 гг. на удалениях 6-7 тыс. км были измерены профили напряженности электромагнитного поля для различных высот до 250 км в различных геофизических ситуациях. На опытном образце ЗГРЛС отрабатывались аппаратурные и программно-алгоритмические решения загоризонтных радиолокаторов.
Были отработаны методы сложения в пространстве мощностей передатчиков в широком диапазоне радиоволн с практически мгновенной перестройкой частоты в широкой полосе. Отработаны методы электронного фазо-фазового управления лучами передающей и приемной антенн в горизонтальной и вертикальной плоскостях. Отработаны аппаратурные и программно-алгоритмические решения анализа помеховой обстановки и автоматического выбора рабочей частоты с минимальным уровнем помех.
Большое внимание уделялось способам обработки информации и выделения сигналов на фоне мощных активных и пассивных помех, включая корреляционную обработку, аналоговые и цифровые методы узкополосной фильтрации доплеровских частот, траекторную обработку и др. Был выполнен большой объем исследований условий дальнего и сверхдальнего (включая кругосветные трассы) распространения декаметровых радиоволн в различных геофизических условиях. Отработаны методы оптимизации частотно-угловых режимов работы станции и автоматического выбора диапазона оптимальных рабочих частот. В целом были отработаны методы комплексной адаптации загоризонтных радиолокаторов к непрерывно изменяющейся помеховой обстановке и геофизическим условиям на трассе и автоматического обнаружения целей.
В ходе этих работ были произведены обнаружения большого количества запусков баллистических ракет как попутных, так и специальных на дальностях 3, 6 и 7 тыс. км, включая групповые старты ракет.
На станции с комплексом вынесенных средств был отработан натурно-математический метод испытаний загоризонтных радиолокаторов. Метод базировался на разработке математических моделей ионосферы и распространения радиоволн, эффективных отражающих поверхностей и сигналов целей, помеховой обстановки и аппаратурно-программного комплекса. По результатам натурных работ на станции с комплексом вынесенных средств производилась калибровка моделей и их проверка по реальным запускам баллистических ракет. Составленная из таких моделей комплексная модель загоризонтного обнаружения совместно с моделями налета целей использовалась для испытаний боевых загоризонтных РАС (Ф.А. Кузьминский, Э.И. Шустов, В.Н. Стрелкин).
Основным явлением, которое было положено в основу обнаружения стартующих ракет, является отражение коротких радиоволн с большим РЛ поперечным сечением (ЭПР) от расширяющегося потока частично ионизированных продуктов сгорания ракетного топлива на ионосферных высотах 100-300 км (130 сек. полетного времени). Во время проведения этих экспериментов было установлено, что с помощью узкого (по углу места) передающего луча, прижатого как можно ближе к горизонту, часть излученной энергии может войти в ионосферные каналы при их возбуждении через рефракцию. Были выявлены также другие механизмы возбуждения скользящего распространения, включая рефракцию на крупномасштабных неоднородностях и диффузию пучков на случайных неоднородностях ионосферы. Механизм скользящего распространения определил основные особенности использования этого первого поколения советских ЗГ радаров. Достаточное количество экспериментальных обнаружений специально запланированных запусков ракет было проведено на расстоянии 3 и 6 тыс. км. Следует отметить, что Николаевский загоризонтный радар был экспериментальным, поэтому все типы явлений и распространений тщательно изучались.
Наряду с работами по обнаружению стартующих ракет проводились также работы по обнаружению воздушных целей. После доработок аппаратуры и программного обеспечения в 1974-76 гг. под руководством Ю.К. Гришина и Э.И. Шустова была выполнена серия испытаний по обнаружению самолетов в пределах первого скачка при дальности до 3000-3500 км. На этом этапе работ были решены основные научные и технические задачи, которые нужно было решить для создания боевых станций загоризонтного обнаружения самолетов.
4. Создание и испытания боевых станций
К сожалению, вплоть до 1972 г. не имелось достаточно достоверных и надежных экспериментальных данных по обнаружению стартующих ракет, подтверждающих высокую надежность механизма канального распространения, на котором основано обнаружение целей в диапазоне дальностей от 9 до 12 тыс.км. Тем не менее, в 1972 г. были приняты решения по сооружению двух рабочих (боевых) загоризонтных радаров для дальнего обнаружения стартующих с континента США ракет. В течение 1975-1979 гг. обе эти станции были созданы: первая недалеко от знаменитого Чернобыля (Украина) и вторая — вблизи Комсомольска-на-Амуре (российский Дальний Восток) (Ф.А. Кузьминский, Э.И. Шустов, Г.А. Лидлейн).
В основных чертах они повторяли Николаевский прототип, но были более сложными и дорогими. Передающая система содержала две отдельные антенны: для низкочастотной части (5-14 МГц) и для высокочастотной части (14-28 МГц) частотного диапазона. Полная мощность 26 передатчиков составляла примерно 1,5 МВт. Для примера, любители-коротковолновики используют для связи на огромных расстояниях передатчики мощностью всего в десятки ватт. Каждая передающая антенна содержала по 13 мачт с 10 диполями на каждой. Приемная система состояла из двух отдельных антенн, каждая из которых включала по 30 мачт и имела длину 500 м и 250 м соответственно. Двадцать четыре приемника использовались для непрерывного обзора пространства. Специальная круговая антенна, аналогичная николаевской, содержащая 256 вертикальных диполей (300 т; Н = 7,6м; Н= 15м), была установлена для кругосветного контроля ионосферы в реальном масштабе времени по всем направлениям и обеспечивала потребности процедуры выбора частоты. Большое количество экспериментальных исследований было выполнено на этих боевых радарах в 1981-1984 гг. по обнаружению стартующих ракет, по изучению распространения радиоволн в полярной шапке, наблюдению за осуществлением американской программы Спейс-Шаттл, измерению параметров орбит спутников и т.д.
В то же время длительная работа показала, что механизм канального распространения действует только в течение ограниченного периода времени и не обеспечивает требуемую для боевой работы высокую степень вероятности обнаружения.
Для поддержки рассматриваемых боевых систем в этот период были проведены интенсивные ионосферные эксперименты. Было собрано множество данных, касающихся ионосферного распространения и моделирования, что потребовало больших усилий.
Несмотря на то, что построенные боевые станции не дали возможности полностью решить поставленные перед ними задачи, работа с ними позволила получить ряд ценных научных результатов, относящихся к дальнему распространению KB, к структуре ионосферы в приполярных районах и к опыту создания мощных радиолокационных средств коротковолнового диапазона. Были проведены значительные работы и разработаны предложения по модернизации этих станций с целью улучшения их технических характеристик. Наиболее ценные результаты могли быть получены при совместном использовании обеих станций. Однако Чернобыльская катастрофа (происшедшая в непосредственной близости от ЗГ радаpa ) вывела полностью из строя одну из них. Финансовые трудности, которые испытывала страна во второй половине восьмидесятых годов, не дали возможности построить на новом месте станцию взамен Чернобыльской, модернизировать станцию, расположенную на Востоке, и заново ввести в строй всю систему. Между тем проведенные работы по моделированию системы из двух модернизированных станций, опирающиеся на результаты натурных пусков, показали, что созданная система при массированном налете с территории США могла бы обладать достаточно высокой эффективностью. Прекращение «холодной войны» и общее изменение международной обстановки сделало продолжение работ в этом направлении нецелесообразным.
Огромный накопленный опыт по созданию уникальных радиолокационных средств, а также по разработке программного обеспечения этих средств, оказалось более полезным использовать для проведения работ по загоризонтной радиолокации в новых направлениях.