К главе IV 2. Теории тяготения
К главе IV
2. Теории тяготения
„Все сделанные попытки объяснить силу тяжести, как результат движения в среде, находящейся между телами, наталкиваются на то затруднение, что тяжесть беспрепятственно проходит сквозь тела, как бы велики и плотны они ни были, — пишет Аррениус[31]. — Так, например, притяжение Солнца действует на частицу, лежащую в центре Земли, сквозь все промежуточные слои. А так как действие силы должно состоять в каком-нибудь изменении движения тела, подвергающегося ее влиянию, то необходимо принять, что частица, лежащая позади другой, подверженной той же силе, по крайней мере отчасти закрыта от этого влияния. Поэтому на соединительной линии между частицею в центре Земли и любою частицею на Солнце не должна была бы лежать ни одна из бесконечно большого числа тяжелых частиц верхних слоев Земли. Значит, необходимо предположить, что частицы, на которые действует сила тяжести, имеют бесконечно малое протяжение и должны считаться математическими точками. Физически этот взгляд немыслим. Точно также невозможно представить себе, чтобы математические точки могли возмущать движение. Удивительно, что та самая сила природы, которую мы точнее всего можем проследить посредством вычисления, в физическом отношении представляет величайшую загадку".
Совершенно особым образом подходит к вопросу новейшая (1915 г.) теория тяготения, разработанная А. Эйнштейном, которая вовсе не рассматривает тяготение как некоторую „силу". Исходным пунктом теории тяготения Эйнштейна являются следующие соображения[32]:
„Вообразим себе систему в виде большого ящика или комнаты и положим сперва, что она находится в гравитационном поле, т. е. в такой части пространства, в которой действуют силы тяготения, и что она в этом пространстве неподвижна. В виде примера представим себе, что она находится на земной поверхности, где гравитация, т. е. сила тяжести, действует вертикально вниз от потолка к полу комнаты. Наблюдатели, находящиеся в этой системе, заключают следующее. Тела, спокойно лежащие на полу, на столе и т. д., производят давление на тела, находящиеся под ними. Если взять в руку какое-либо тело, напр., свинцовый шарик, и отпустить его, то он начинает падать вертикально вниз с ускорением, которое мы обозначим буквой g, и которое оказывается независящим от рода тела, если исключить сопротивление воздуха. Если шарик бросить в горизонтальном направлении, то он начнет двигаться по кривой линии (по параболе) вниз, и на некотором расстоянии от наблюдателя достигнет пола. В обоих случаях мы имеем дело с весомой массой взятого тела.
„Теперь рассмотрим другой случай. Та же система находится в пространстве, в которого нет никакого гравитационного поля, но сама система движется с ускорением g по направлению, обратному тому направлению, в котором раньше действовала гравитация, т. е. [движется] по направлению от пола к потолку. Наблюдатель, находящийся внутри системы, замечает следующее. Все тела, спокойно лежащие на неподвижных предметах (пол, стол, рука), производят давление на свои опоры; такое же давление производит и сам наблюдатель хотя бы на пол ящика. Если наблюдатель выпустит из рук какой-нибудь предмет, напр., свинцовый шарик, то он увидит, что шарик движется по направлению к полу с ускорением g, между тем как наблюдателю, находящемуся вне ящика, тот же шарик представится неподвижным. Если наблюдатель бросит шарик по направлению, параллельному полу, то заметит, что шарик движется по кривой линии и на некотором расстоянии ударяется об пол. Наблюдателю, находящемуся вне ящика, представится, что шарик движется прямолинейно и равномерно по направлению, параллельному полу. Ясно, что для этого наблюдателя движение происходит по инерции и зависит от инертной массы шарика.
„Сравнивая явления, наблюдаемые в указанных двух случаях внутри системы, мы видим, что они вполне тождественны, хотя в первом случае они зависят от весомой массы тел, а во втором случае — от массы инертной. Наблюдатель, находящийся внутри ящика, не имеет возможности отличить эти два случая друг от друга, и он, например, во втором случае может предположить, что внутри ящика действует гравитационное поле. Все изложенное приводит нас к результату огромной важности. Наблюдатель, находящийся внутри системы, не имеет возможности отличить друг от друга прямолинейного равномерно-ускоренного движения системы от наличности внутри системы гравитационного поля. Все явления происходят внутри системы совершенно одинаково в обоих случаях. Мы можем сказать, что гравитационное поле и равноускоренное прямолинейное движение системы друг другу эквивалентны[33]. Для Эйнштейна эквивалентность настолько полна, что он вообще всякое ускорение системы отождествляет с возникновением гравитационного поля".
Исходя из этого, Эйнштейн развивает стройную теорию тяготения, принципиально отличную от всех прежде предлагавшихся и уже получившую частичное подтверждение согласием ее неожиданных следствий с наблюдениями.
К сожалению, эта теория не может быть общепонятно изложена.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
1. Трудность согласования квантовой теории и теории излучения
1. Трудность согласования квантовой теории и теории излучения Электромагнитная теория, дополненная теорией электронов Лоренца, дает совершенно ясную и точную картину излучения, испускаемого системой движущихся зарядов. Если заданы структура и закон движения системы
Закон всемирного тяготения
Закон всемирного тяготения Я опять хочу подчеркнуть, что законы сохранения, которые были описаны, в действительности не «законы», а просто обобщения. Производя разнообразные измерения, ученые убеждались каждый раз, что импульс, момент количества движения, масса и
Всепроницаемость тяготения
Всепроницаемость тяготения „Если бы, — продолжает упомянутый ученый, — удалось нейтрализовать всю Землю (т.-е. уничтожить на ней силу тяжести), то она могла бы покинуть нашу солнечную систему и присоединиться к системе какой-нибудь другой звезды. А если бы случилось, что
Экран тяготения и вечный двигатель
Экран тяготения и вечный двигатель Мы подходим к самому убийственному доводу против проекта английского романиста, к первородному греху его основной идеи. В уме читателя, вероятно, уже мелькнула тень сомнения, когда романист говорил нам о возможности поднять тяжелый
Погружение в тень тяготения
Погружение в тень тяготения В смысле затраты работы совершенно безразлично, перенесете ли вы груз с Земли в бесконечно удаленную точку, или в такое место (хотя бы и весьма близкое), где он вовсе не притягивается Землей. И в том, и в другом случаях вы совершили бы одинаковую
К главе II 1. Силы тяготения
К главе II 1. Силы тяготения Приведенные в начале главы II примеры действия силы тяготения могут быть проверены несложными расчетами, основанными, на законе Ньютона и элементах механики. Напомним сначала, что в механике за единицу измерения силы принята сила, которая,
К главе IV 3. Поглощение тяготения
К главе IV 3. Поглощение тяготения Вопрос о существовании такого вещества, которое было бы вполне или отчасти непроницаемо для тяготения (т. е. обладало бы свойствами фантастического „кеворита", упоминаемого в романе Уэльса), служил неоднократно предметом научного
ИСТОРИЯ ОТКРЫТИЯ ЗАКОНА ТЯГОТЕНИЯ
ИСТОРИЯ ОТКРЫТИЯ ЗАКОНА ТЯГОТЕНИЯ Декарт писал 12 сентября 1638 г. Мерсенну: «Невозможно сказать что-либо хорошее и прочное касательно скорости, не разъяснив на деле, что такое тяжесть и вместе с тем вся система мира»{111}. Это заявление диаметрально противоположно заявлению
Гримасы «всемирного тяготения».
Гримасы «всемирного тяготения». Согласно концепции всемирного тяготения, математически выраженной Ньютоном, каждая массочка во Вселенной притягивает всех остальных массочек. Ньютон честно говорил, что он не понимает физического механизма этой притягивающей
Глава 3 Закон всемирного тяготения
Глава 3 Закон всемирного тяготения Творенья интеллекта переживают шумную суету поколений и на протяжении веков озаряют мир светом и теплом. Альберт Эйнштейн «Исаак
Биметрические теории и теории с массивным гравитоном
Биметрические теории и теории с массивным гравитоном Вспомним, чтобы описать слабые гравитационные волны, мы разбивали динамическую метрику ОТО на метрику плоского пространства-времени и возмущения метрики. Оказалось, что возмущения в виде волн могут распространяться
Теории великого объединения (ТВО) и теории всего сущего (TBC)
Теории великого объединения (ТВО) и теории всего сущего (TBC) Названия лишь вводят в заблуждение, поскольку предлагают больше, чем могут дать. В действительности они лишь указывают на объединение известных взаимодействий в рамках одной, всеобъемлющей теории. ТВО
Как Ньютон открыл закон всемирного тяготения
Как Ньютон открыл закон всемирного тяготения Джеймс Э. МИЛЛЕР Огромный рост числа молодых энергичных работников, подвизающихся на научной ниве, есть счастливое следствие расширения научных исследований в нашей стране, поощряемых и лелеемых Федеральным
Закон всемирного тяготения
Закон всемирного тяготения Первый вопрос, который задал себе Ньютон, был таков: чем отличается ускорение Луны от ускорения яблока? Иначе говоря, каково различие между ускорением g, которое земной шар создает на своей поверхности, т.е. на расстоянии r от центра, и ускорением,
Энергия тяготения
Энергия тяготения На простом примере мы уже познакомились с энергией тяготения. Тело, поднятое на высоту h над землей, обладает потенциальной энергией mgh.Однако этой формулой можно пользоваться лишь тогда, когда высота h много меньше радиуса Земли.Энергия тяготения –