Глава 20. Семнадцатый век

«Великие идеи извлекаются из общего котла интеллектуального развития. Они редко выпекаются в индивидуальных очагах по обычным рецептам».

Джеймс Ньюмен

Тысячелетие астрономии

В течение более чем ста веков от возникновения первых цивилизаций до Галилея астрономия прошла путь от наивных представлений, порожденных любопытством первобытного человека и его страхом перед природой, до хорошо организованной науки, готовой предоставить человечеству огромную лабораторию Вселенной для проведения исследований по механике, лежащей в основе всей физики. На протяжении многих столетий астрономией занимался лишь узкий круг составителей календарей и священников, и только изредка появлялся человек с пытливым умом, более наблюдательный, чем остальные, старающийся извлечь из запутанного клубка наблюдений суть нового закона. Пользуясь суеверием людей и их страхом перед непонятными явлениями природы, процветала астрология. Но подобно алхимии, которая много сделала для развития химии, развитию астрономии на ранних стадиях способствовала именно астрология. Затем стали появляться философы и ученые, стремящиеся к приобретению знаний ради самих знаний. Они старались извлечь из наблюдений довольно грубые рабочие схемы движения планет, Луны и Солнца. Они старались понять, чем обусловлены движения небесных светил, придумывая при этом причины, которые кажутся сейчас фантастичными и слишком сложными.

Много столетий астрономия, если не считать немногих способных наблюдателей, находилась как бы в спячке, тогда как цивилизация постепенно готовилась к новому пробуждению. В это мрачное время господствовало учение церкви и метод дедуктивных доказательств. Традиция заменяла эксперимент, предрассудки властвовали над наукой. И все же росла необходимость в науке — в в медицине, в навигации. Все чаще и чаще слышались настойчивые требовании: «Наблюдайте то, что происходит; прекратите споры о том, что должно произойти». Предрассудки отступали на задави план, оттесняемые экспериментальными наблюдениями и выводами, которые из них извлекались.

Эпоха Возрождения

В течение трех столетий, предшествовавших XVII веку, в Европе росли и распространялись идеи Возрождения — возникали новые взгляды в искусстве и литературе, возникали новые течения в религии. Крепкие тиски традиционной схоластики слабели, вековое невежество уступало место изучению греческих авторов в оригиналах; производство бумаги и рождение печати повсеместно способствовали распространению знаний, усиливался всеобщий интерес к науке; благодаря развитию навигации возникали новые рынки, новые богатства, новое отношение к окружающему, а также новые возможности интеллектуального развития; стали развиваться свободнее искусство и ремесла, помогая проявлению беспокойного и жаждущего знаний человеческого ума.

В эпоху Возрождения постепенно родилось представление о том, что человек свободен в своих поступках и не может быть рабом и хранителем традиций того круга, к которому он принадлежит. В эту эпоху люди с энтузиазмом стремились к приобретению знаний, а общие тенденции духовного развития подготовили почву для развития в XVII столетии науки: «…гуманисты… сыграли главную роль в том процессе расширения умственного горизонта, который и сделал возможным развитие науки. Если бы не они, люди с научным складом ума никогда не сбросили бы интеллектуальных оков предвзятых теологических мнений; без них внешние препятствия могли бы оказаться непреодолимыми»[74]

В эпоху Возрождения жил человек, ученый, опередивший свое время на одно или даже на два столетия, — Леонардо да Винчи. Он был гениален во всем, за что бы ни принимался, — в живописи, скульптуре, архитектуре, в технических изобретениях, физике, биологии, философии… — он считал наблюдение и эксперимент единственным правильным подходом к науке. «Он с презрением отвергал алхимию и астрологию… природа была для него не чем-то таинственным, а повседневным, предметом первой необходимости».

Он доверял логическим выводам арифметики и геометрии, так как они были основаны на концепциях универсальной истины; однако наука; по его мнению, должна быть основана на эксперименте.

Он говорил: «Бесполезны и полны ошибок те науки, которые не родились из эксперимента, матери всех фактов, и которые нельзя свести к одному ясному эксперименту». Его собственные исследования и опыты в области искусства, архитектуры, техники помогли приобрести обширные познания в различных областях науки: обнаружить свойства движения; сформулировать задолго до Галилея первый закон Ньютона в простой форме; изучить свойства потоков и давления жидкости, волн в воде и звуковых волн в воздухе; утвердить невозможность вечного движения. Он изучал также оптические явления, свойства глаза, законы перспективы. Имеются основания считать, что за 200 лет до Гюйгенса Леонардо да Винчи сконструировал маятниковые часы. Он считал, что окаменелости свидетельствуют о геологической истории Земли. Можно предположить, что именно он открыл систему кровообращения; он изучал анатомию человека и оставил целый ряд прекрасных рисунков, выполненных им при вскрытии трупов. Об этом свидетельствуют дошедшие до нас рисунки и отрывочные заметки в записных книжках. «Если бы он опубликовал свои работы, наука могла бы сразу продвинуться далеко вперед и занять место которого она достигла лишь столетием позже»[75].

«Прогресс»

Возникло представление о прогрессе как некая новая точка зрения на развитие общества. Теперь мы считаем прогресс очевидной целью — прогресс в благосостоянии, образовании и т. п. — и могли бы счесть, что наши предки тоже всегда стремились к прогрессу. Однако в течение многих столетий люди старались следовать давно сложившимся традициям «золотого» века, и идея прогресса была им совершенно чужда. Передовые взгляды в эпоху Возрождения дали новый толчок развитию науки.

Семнадцатое столетие

Гелиоцентрическая система Коперника распространялась все быстрее и быстрее по мере того, как появлялись новые экспериментальные подтверждения, расширялась свобода слова и возможности преподавания. Тихо Браге и Кеплер проанализировали движение планет и вывели на основе этого анализа простые общие «законы». Галилей создал и развил механику; он спорил, учил и провозглашал свои идеи, стремясь утвердить науку, основанную на реальных фактах. Это был громадный прогресс от первоначальных, исполненных благоговейного страха. наблюдений за планетами и затмениями до телескопа Галилея и законов Кеплера. Для этого потребовалось десять тысяч лет, и если этот срок покажется вам слишком долгим, вспомните, что речь идет всего лишь о четырехстах человеческих поколениях. И разве так уж велик этот срок для того, чтобы от наивных суеверий перейти к фактам, определенным с математической строгостью? Многие считают такой прогресс быстрым. Однако за три или четыре поколения последующего столетия наука, основанная на множестве экспериментов, сделала значительно большие успехи.

В первые годы XVII века начался новый этап развития науки. Кеплер и Галилей вели свои исследования. Астрономия была уже готова предоставить человечеству для исследований по механике огромную лабораторию, причем такую, в которой отсутствовало трение. Проведение экспериментов стало модным занятием. К началу XVIII века полученные на основе наблюдений законы движения планет были использованы для проверки общих законов механики. Ньютон разработал новый метод научного исследования, в котором построенная наугад теория должна была давать большое разнообразие результатов по методу дедукции — методу, который был известен с давних времен, однако теперь результаты и выводы следовало проверять с помощью эксперимента. Дедуктивный метод, опасный и малонаучный при словесных доказательствах, занял теперь надлежащее место в науке, обеспечивая реальную связь между теорией и экспериментом. Изменения в политической, социальной и религиозной структуре западной цивилизации предоставили науке большие возможности. На протяжении всего лишь столетия наука расцвела и стала очень популярной; экспериментальные исследования и реалистические аргументы прочно вошли в жизнь.

В создании механики и разработке теоретических основ астрономии принимали участие многочисленные ученые. Одни изобретали новые или совершенствовали приборы, необходимые для физиков, хотя последние сами «ковали» необходимые инструменты, другие старались применить новый экспериментальный подход в новых областях науки. Благодаря все возрастающему обмену знаниями началось одновременное развитие многих наук. Ученые стяжали своей стране славу, и королевские милости им оказывались за это, а не из-за суеверий и страха перед неведомыми опасностями, как то бывало прежде. Кроме того, считалось, что ученые могут приносить пользу не только торговле и различного рода производствам, но и в период войн. Это был первый вклад ученых в промышленность[76], за что их деятельность в настоящее время так поощряется!

В это же время стали создаваться различные научные общества. Во Флоренции, а также в Париже были основаны Академии наук, в Лондоне — Королевское общество. Эти организации способствовали выходу науки из дебрей средневековья. Они оказывали поддержку экспериментальным исследованиям, поощряли дискуссии и обмен мнениями, но самым большим вкладом в развитие науки была публикация научных трудов. Ученым больше уже не приходилось ограничиваться личной перепиской для сообщения с своих научных открытиях. Теперь эти открытия проверялись на опыте, обсуждались, а затем публиковались в печати. С ними можно было ознакомиться и применить их на практике. Оживленная и широкая дискуссия способствовала, тому, что научные проблемы буквально «витали в воздухе»; наступила эпоха быстрого прогресса.

Основными вехами явились имена Коперника, Тихо Браго, Кеплера, Галилея и Ньютона. Но в создании науки XVII века велика заслуга и многих других ученых. Мы приводим здесь краткие сведения о некоторых из них; труды этих ученых были связаны с физикой и астрономией. Большие успехи были достигнуты также в развитии биологии и медицины (исследования системы кровообращения, механизма дыхания, исследования по эмбриологии…).

Уильям Гильберт (1540–1603). Врач, проводил опыты по магнетизму, написал на эту тему прекрасную книгу. Проводил также опыты по электростатике.

Фрэнсис Бэкон (1561–1626). Блестящий публицист, создавший систему исследования на основе эксперимента и индукции. Его система не была практична и не внесла значительного уклада в развитие науки. Бэкон отвергал работы Гильберта и Галилея и отрицал теорию Коперника. Однако он способствовал распространению представления о том, что природу нужно исследовать с помощью различного рода экспериментов, а не только описывать и обсуждать ее проявления.

Рене Декарт (1596–1650). Философ и математик. Родился во Франции в богатой семье; жизнь его протекала без особых забот, но свершил он много. Внес большой вклад в философию, математику, а также в анатомию. Исследуя оптические явления и движение тел, он был близок до некоторой степени к открытию законов Ньютона. Предложил остроумную теорию вихрей для объяснения гравитации, сил сцепления и движения планет. Самый большой вклад Декарта в науку — введение прямоугольной системы координат х и у, позволяющей получать алгебраические уравнения для кривых, касательных и т. д. Это открытие подготовило почву для создания дифференциального исчисления, которое позволило с помощью подобных графиков вычислять площади и строить касательные не путем измерений, а на основе решения уравнений. Такая система координат была названа в честь Декарта «декартовой» (или «картезианской»).

Отто фон Герике (1602–1686). Сконструировал действующую модель вакуумного насоса и применил ее для демонстрации существования атмосферного давления с помощью «магдебургских полушарий» — больших полых полусфер, которые нескольким упряжкам лошадей не удавалось растащить в разные стороны, если из шара, образуемого этими полусферами, предварительно был выкачан воздух.

Евангелиста Торричелли (1608–1647). Физик, создал первый барометр.

Блэз Паскаль (1623–1662). Богослов и ученый. Заложил основы теории вероятностей. Установил закон распределения давления в жидкости.

Роберт Бойль (1626–1691). Великий экспериментатор, изучавший физику вакуума, законы поведения идеальных газов, химию. Один из первых членов Королевского общества. Написал трактат «Химик-скептик».

Христиан Гюйгенс (1629–1695). Математик и физик, создатель волновой теории света. Сконструировал очень точные часы (вероятно, первую модель маятниковых часов) с корректирующим устройством, учитывающим незначительное увеличение периода маятника при большой амплитуде. Занимался исследованиями в области механики и еще до Ньютона вывел выражение v2/R для центростремительного ускорения.

Роберт Гук (1632–1702). Начал заниматься научной работой как ассистент Бойля, но вскоре достиг значительных успехов, и получил большую известность как экспериментатор и как теоретик. Его соперничество с Ньютоном приносило ему много огорчений; гениальные труды Ньютона затмевали его собственные и умаляли его достижения. Если бы не это соперничество, в котором победителем оставался гений Ньютона, Гука можно было бы считать одним из величайших ученых XVII века. Гук с горечью утверждал, что некоторые достижения Ньютона в области механики фактически открыты им, Гуком, еще раньше. Гук был одним из первых членов Лондонского Королевского общества.

Эдмунд Галлей (1656–1742). Астроном, друг Ньютона. Много сделал для того, чтобы помочь публикации «Принципов» Ньютона. Один из наиболее значительных членов Королевского общества.

Наука

В тот период наука развивалась по пяти основным направлениям: 1) по мере роста свободы слова росло и общее значение науки, основанной на эксперименте; 2) происходило накопление фактических знаний и теории, объясняющей полученные результаты; 3) развивались математические методы для решения тех или иных задач; 4) изобретались и конструировались новые приборы для проведения экспериментов и, наконец, 5) изменялись научные методы и отношение к науке.

1) Возросшее значение науки. На примере жизни Галилея мы уже видели, как возросло значение науки в ту эпоху. Отец Галилея считал математику да и науку вообще плохо оплачиваемым и малоуважаемым занятием, и все же Галилей, несмотря на бунтарский нрав, в конце жизни был уважаем как один из величайших людей в мире. Ньютону, Бойлю и Гуку не приходилось отстаивать свои научные позиции; они спорили лишь о своих открытиях, а не о праве на само открытие. Они писали свои труды, не страшась осуждения и не боясь показаться смешными, их заботили лишь приоритет и слава. Дискуссии и публикации трудов помогали науке становиться общенародной и универсальной. Так истинность науки начала воздействовать на человеческий разум.

2) Накопление знаний. Научные достижения XVII века значительны и многообразны: к ним следует отнести законы Кеплера, открытие кометы Галлея, закон Гука, открытие Гарвеем системы кровообращения, открытия Бойля в области химии и его закон для идеальных газов.

3) Достижения в области математики. Была изобретена декартова система координат. Графики связали алгебру с геометрией, с одной стороны, сводя геометрические формы и преобразования к сжатым алгебраическим выражениям, а с другой — позволяя наглядно представлять алгебраические уравнения.

На графике I фиг. 98 изображена проходящая через начало координат прямая линия, на которой нанесены точки (x1, y1), (x2, y2)…. Из подобия треугольников следует, что отношения y1/x1, y2/x2…. равны между собой, т. е. одинаковы для любой точки на прямой. Обозначим эту постоянную k. Тогда каждая точка на прямой будет представлена парой значений (например, x1, y1), удовлетворяющих соотношению у/х = k или у = . Это и есть алгебраическое описание графика, а прямая представляет собой геометрический образ данного соотношения. Если у и х — результаты физических измерений (например, s и t2 для падающего тела), то прямая линия выражает соотношение y = (const)x, или у ~ х, а наклон прямой определяет постоянную.

Фиг. 98. Графики в декартовой системе координат.

График II иллюстрирует уравнение у = kх + с. В этом случае мы не можем сказать, что у ~ х, но можем сказать, что Δу ~ Δх.

На графике III изображена окружность, причем

для точки P1

x21 у21 = R2

для точки P2

x22 у22 = R2

таким образом, уравнение этой окружности имеет вид

x2у2= R2

Его можно переписать так:

x2/R2 + y2/R2 = 1

Эллипс можно получить равномерным растяжением окружности.

Нарисуйте окружность на листе резины и растяните этот лист (фиг. 99).

Фиг. 99. Растяжение окружности в эллипс.

Радиус R превратится в полуоси а и b. Окружность в соответствии о уравнением x2/R2 + y2/R2 = 1 и с площадью круга πR2 = π∙RR превратится в эллипс, описываемый уравнением…?.. = 1 и площадью =?

Таким образом, с помощью декартовой геометрии эллиптические орбиты можно записать в виде алгебраических уравнений.

Возникли две серьезные математические проблемы, связанные с вычислениями: определение угла наклона касательных к кривым и площадей под кривыми с помощью математики, т. е. создание методов дифференцирования и интегрирования. Тангенс угла наклона касательной определяет скорость изменения функции. Вычисления сводятся просто к нахождению скорости изменения функции в некоторой точке. Это позволяет нам вычислять ускорения из выражения, описывающего изменение скорости, или скорости из выражения, связывающего расстояние и время. (Например: если s = 16t2, то v = 32t; отсюда следует, что а = 32, т. е. постоянное значение.) Интегрирование — операция сложения бесконечно большого числа бесконечно малых величин: нахождение площади путем сложения элементов исчезающе малых размеров (как и в случае второго закона Кеплера) или нахождение силы притяжения между телами конечных размеров путем суммирования сил притяжения бесконечно малых элементов объема этих тел.

Вы уже пользовались графиками и вычислениями ранее, при решении задачи о колесе, катящемся вниз с холма.

1. ЭКСПЕРИМЕНТ —> ГРАФИК. Вы наносите на график зависимость s от t2. Точки изображают события. Проведенная через эти точки прямая представляет собой совокупность фактов.

2. РАЗМЫШЛЕНИЯ —> ТЕОРИЯ. Предположите, что ускорение постоянно, рассматривая это как возможный простой закон природы. Вычислите необходимое соотношение между s и t. При интегрировании будут складываться все маленькие расстояния, проходимые с возрастающей скоростью; при этом получится, что при постоянном ускорении s должно меняться пропорционально t2.

3. ПРОВЕРКА. Проведите через начало координат прямую, представляющую теоретическое соотношение s ~ t2. Если ваши точки лежат близко к этой прямой, то это значит, что движение колеса происходит с ускорением, близким к постоянному. Прямая линия на вашем графике «пробная»; проводя ее, вы отвечаете на вопрос, «имеет ли место движение с постоянным ускорением». Проведя на вашем графике наиболее подходящую к экспериментальным точкам кривую, вы подтвердите вашу гипотезу — и получите таким образом закон, справедливый в данном случае.

4) Развитие приборостроения. Новые приборы, как и новые математические методы, могут способствовать быстрому развитию науки. Семнадцатый век был веком многочисленных изобретений в области приборостроения: телескоп, микроскоп, вакуумный насос, барометр, маятниковые часы, первые термометры — все эти приборы содействовали необычайным успехам экспериментальной физики и науки в целом.

5) Отношение к науке и новые методы. От древних греков до Галилея наука создавалась теми, кто собирал, наблюдал, составлял и размышлял[77]. Собиратели накапливали знания, которые были столь бессистемны, что их вряд ли можно было назвать наукой. Те, кто составлял схемы, систематизировали эти знания и извлекали из них правила, которые служили практическим целям, ибо позволяли зачастую суммировать факты и даже делать предсказания. Эти правила вместе с накопленными знаниями и методами для приобретения новых знаний и положили начало новой науке. Тем временем мыслители были заняты объяснениями, т. е. утверждениями, которые позволяли бы связать полученные знания между собой и обеспечить их лучшее «понимание» и восприятие. Многие объяснения или доводы рождались только на основе размышлений, почти вне связи с опытом.

Например, эпициклы объяснялись «идеальностью кругов», а принцип действия барометра — «невидимыми нитями, которые тянут ртуть вверх». Некоторые объяснения были не более чем простой констатацией фактов, вроде авторитетного заявления, что природа «устроена именно так»; например, поведение падающих тел объяснялось тем, что они стремятся занять «естественно наиболее низкое место на земле».

Человек должен был получить уверенность в том, что внешний мир устроен просто, в противном случае его одолевал бы страх перед неизвестным и он запутывался бы во все больших суевериях. По мере установления общих законов — схемы эпициклов, закона Гука, законов Кеплера — возрастало чувство надежности, и прежняя вера в то, что природа подчиняется определенным законам и устроена разумно, приобретала научную основу. Древние греки выводили свои объяснения и схемы явлений природы из нескольких общих идей, которые они просто принимали на веру. Например, из «совершенства кругов» они выводили эпициклы.

В течение XVII столетия дедуктивный метод рассуждений попал в немилость; в самом деле, он фактически навязывался известными авторитетами, но не имел научной основы. В середине этого столетия эксперимент стали считать реальным источником данных и проверки научных знаний. Люди занялись созданием правил или законов на основе экспериментов с помощью индуктивного метода. При этом они тоже считали, что природа проста и неизменна, т. е. что при тех же самых условиях будут снова и снова наблюдаться те же явления. Они все еще считали, что явления природы обусловлены некими причинами, однако смысл и значение этих причин оставались по-прежнему неясными.

Хотя индуктивный метод был честным методом, позволяющим выводить правильные законы, ему недоставало умения связывать явления воедино, и с его помощью нельзя было достичь того удовлетворения, которое дает настоящая теория. Ньютон, одаренный огромной интуицией, сначала рассматривал эксперимент, затем переходил к теории, а уж потом с помощью дедуктивного метода на основе этой теории предсказывал результаты, которые можно было впоследствии проверить. Таким образом, теория снова заняла свое место в науке, но уже на более надежном фундаменте. Она опять стала играть важную роль, как, например, теория всемирного тяготения, но уже не как хозяин науки, а скорее как ее слуга.

Еще позже, в прошлом веке, теория стала все более и более зависеть от того, насколько она продуктивна. Ученые спрашивали: «Может ли эта теория делать предсказания?» Если нет, ее отбрасывали или видоизменяли. Теперь такое обращение с теорией кажется нам слишком поспешным. Ее польза может заключаться не только в способности правильно предсказывать те или иные факты, но и в той схеме рассуждений, которую она нам предлагает.

Новая философия Декарта

Точка зрения ученых на науку менялась в соответствии с духом времени. Во Франции Рене Декарт предложил новую философию, которая длительное время оказывала сильное влияние на научное мышление. Одновременно с этим Декарт предложил новую модель Вселенной, и эта модель пользовалась популярностью в течение целого столетия. Убедившись в ошибочности классической философии, Декарт стал рассматривать мир в соответствии со своими собственными мыслями и чувствами, ставя под сомнение каждый свой вывод и проверяя его. На основе своих рассуждений он пришел к дуализму — представлению о двух различных мирах, существующих совместно и одинаково реальных: мир материи, обладающий размерами, формой и движением, и мир души и ума. Подобно тому как двое часов, находящихся рядом, могут показывать одинаковое время, так и эти два мира, совершенно отдельные, находятся в согласии, потому что «бог создал их таким образом».

В этой схеме материя — это нечто совершенно мертвое, неодухотворенное, способное лишь обмениваться движением с другой материей при соприкосновении. Движение материи первоначально должно было начаться по велению бога. Таким образом, согласно Декарту, бог уже не постоянно присутствующая сила, управляющая миром, а первопричина, которая привела Вселенную в движение, установив законы этого движения и предоставив ее затем самой себе. С тех пор движение может лишь передаваться от одной части материи к другой также с помощью материи. Поэтому пространства в Солнечной системе не могут быть пустыми. Они должны быть заполнены невидимым веществом, «эфиром» — носителем этого движения. Поскольку движущаяся область эфира не может простираться неограниченно, она должна образовывать замкнутые цепи, водовороты или вихри.

Таким образом, все пространство заполнено вихрями «эфира», большими и малыми, переплетающимися и обусловливающими движение видимых тел. Планеты движутся по своим орбитам под действием огромного вихря, принадлежащего Солнцу. Земля, вовлекаемая в этот вихрь вместе с другими планетами, имеет свой собственный меньший вихрь, который притягивает к ней предметы. Падение под действием силы тяжести подобно движению соломинки на поверхности воды, которая стремится попасть в центр водоворота. В меньшем масштабе эта картина объясняет силы притяжения между малыми частицами материи.

Такая схема одних водоворотов внутри других кажется нам теперь фантастичной; однако в те времена она имела хождение, ибо объясняла Вселенную в виде огромной машины, запущенной самим богом и продолжающей затем вертеться в соответствии с законами механики. Действительно, декартова картина Вселенной без пустоты, работающей подобно огромной машине, явилась серьезным препятствием, с которым пришлось считаться Ньютону, опубликовавшему свою теорию всемирного тяготения, Ньютон допускал существование вакуума и не объяснял происхождения сил тяготения и их первопричины. Теория Декарта, казалось бы, объясняла многое, но не имела сколько-нибудь солидных оснований — вихри невозможно было обнаружить, о них можно было лишь судить по тем движениям, существование которых они должны были объяснять. Ньютон занялся критикой вихрей с математической точки зрения. Показав, что они противоречат третьему закону Кеплера, и возражая против этой теории, он заявлял: «Я не измышляю гипотез».

Итак, Декарт разрешил сомнения, придя к выводу, что, создав Вселенную, бог позаботился и о действующих в ней законах. Декарт считал, что законы природы должны быть непогрешимы, ибо, создавая их, бог не мог совершить ошибки. Такая точка зрения на законы природы оказала сильное влияние на последующее поколение ученых — Ньютон и его современники считали, что они ищут великие законы, установленные богом, но еще не открытые.

Если вам покажется странной такая точка зрения трезво мыслящих ученых, то задумайтесь над тем, что те же самые проблемы существуют и сейчас на границе естественных наук и философии: какова природа пространства (носителя электромагнитного и гравитационного полей, описываемого релятивистской геометрией)? Что означают законы природы? С какого момента следует вести отсчет времени? Будет ли время продолжаться бесконечно?

Фрэнсис Бэкон

В то время как Декарт пытался объяснить происхождение Вселенной и ее законы на основе опирающейся на математику дедуктивной теории, в Англии Фрэнсис Бэкон пропагандировал индуктивный метод, основанный на систематических экспериментах. Он хотел достигнуть универсальных знаний с помощью организованной системы исследований, позволяющей собрать большое количество данных, на основе которых можно было бы приобрести необходимую информацию. Он считал, что наука не может идти вперед с помощью чистой дедукции и умозрительных рассуждений и не может быстро развиваться на основе случайно полученных данных. Ученые должны тщательно продумывать свои эксперименты и обрабатывать их, прибегая к индукции и строгой проверке.

Таким образом, Бэкон понимал разницу между «хорошим экспериментом» и «возней с тем или иным прибором». Если вы с удовольствием занимаетесь своей работой в лаборатории, то поймете его точку зрения, хотя, может быть, и не так-то легко сформулировать этот критерий научных исследований.

При исследовании движения колеса, скатывающегося с холма, вы следовали методу Галилея и Ньютона: собирали информацию, извлекали правила, придумывали гипотезу, делали выводы, проверяли эти выводы (строили на графике прямую) и т. д.

Фрэнсис Бэкон считал, что в науке нужны именно такие схемы; однако если вам доведется наблюдать за работой ученых, то вы убедитесь, что методы исследования бывают самые разнообразные.

Развитие физической науки нельзя уподобить шахматной игре с ее поочередными ходами; оно значительно сложнее и многообразнее. Нельзя также считать, что прогресс происходит лишь скачкообразно. Первая стадия размышлений и экспериментов может даже привести назад, к исходной точке — «вот из чего мы исходили», но при этом мы обогащаемся знаниями, которые оказываются полезными на следующей стадии (как при вторичном просмотре одного и того же фильма). По этому поводу говорят, что «наука сама себя вытаскивает за волосы»

Бэкон очень красноречиво доказывал необходимость создания организации профессиональных экспериментаторов и теоретиков. Но грандиозная схема была слишком искусственной, чтобы иметь успех; к тому же она преследовала скорее практические цели и не позволяла получить исчерпывающее понимание явлений природы. (В известной мере это похоже на неуместное рвение, которое и в наше время проявляет человек, не обладающий высокой научной квалификацией, но назначенный на пост директора большой научно-исследовательской лаборатории.) Предложения Бэкона оставались лишь бумажными схемами, но тем не менее они оказали большое влияние на членов Королевского общества, в частности на Бойля. Примерно к середине столетия «…под влиянием Бэкона искусство уступило место науке…»[78]. В настоящее время, спустя два столетия, мы видим, что в более глубоком смысле науку тоже можно считать искусством.

Развитие теории; необходимость современной науки

Семнадцатый век был бурным веком для астрономии, как, впрочем, и для других областей науки. Начало этого века ознаменовалось накоплением фактов и законов, которые требовали объяснения. Назрела необходимость в общей теории, которая могла бы объяснить и объединить целый ряд явлений. К концу столетия запас знаний и вызываемый ими интерес возросли и расширились, однако самым важным событием явилась созданная и опубликованная Ньютоном теоретическая схема, давшая единое «объяснение» и обещавшая еще больше в будущем.

Если вы хотите постичь современную физику, вы должны изучить лежащую в ее основе теорию. Вы должны почувствовать, какая теория «правильна». Едва ли вы узнаете об этом из поучений и рассуждений относительно теории. Надо просто изучить ее на каком-либо примере. В последующих четырех главах мы опишем и обсудим теорию всемирного тяготения Ньютона.