Глава 14. Астрономия у греков. Великие теории и наблюдения

«Если наука — нечто большее, нежели собрание фактов, если она не просто позитивная сумма знаний, а сумма знаний, приведенная в систему, если она не просто произвольный анализ и случайный эмпиризм, а синтез, если она не просто пассивная регистрация событий и явлений, а творческая активность, — тогда без сомнения (древняя Греция) была ее колыбелью».

Джордж Сартон[15]

Теория — собрание фактов; предсказание явлений

Накопление знаний по астрономии происходило со времен древних цивилизаций — от простой регистрации тех или иных фактов до систематических наблюдений, которые давали материал для составления календарей, увеличивая в то же время запутанный клубок связанных с астрологией суеверий. Из этих фактов возникали легенды, поучавшие детей или успокаивавшие простой народ. В этих легендах Солнце считалось божеством, планете Beнера поклонялись, рассказывалось об «обители блаженства», находящейся над хрустальным сводом звезд. Но сами легенды не были лишь суеверными мифами. Это были предвестники научной теории, их связь с фактами была слабой, скорее фантастической, однако они создавали основу для «объяснения» этих фактов. Когда зародилась греческая цивилизация, ее мыслители основали в науке новые методы: они стали искать общие схемы объяснения, которые взывали бы к человеческой любознательности. Они уже не довольствовались простыми мифами, удовлетворявшими любопытство толпы. Они ставили себе задачу «предвосхитить явление», т, е. создать такую схему, которая могла бы объяснить факты. Это было гораздо важнее простого собрания фактов или создания для описания каждого нового факта отдельной теории. Это был интеллектуальный прогресс, начало создания научной теории.

Первые греческие ученые нарисовали простую картину устройства Вселенной, но по мере накопления данных они усложняли схемы, чтобы объяснить детали тех или иных явлений: сначала простые факты о Земле, затем более детальные схемы, объясняющие движение небосвода в целом, а также Солнца, Луны и планет в отдельности.

На каждой стадии ученые пытались на основе немногих простых допущений или общих принципов создать возможно более логичное и полное «объяснение» или описание наблюдаемого явления. Такое объяснение должно было способствовать систематизации накопленных фактов и получению дальнейших предсказаний. Но прежде всего она должно было укреплять веру в существование системы, объединяющей различные явления, в разумное устройство природы. Хотя поиски схемы иногда диктовались практической необходимостью, например необходимостью создания календаря, удовлетворение, получаемое учеными от четкого объяснения разнообразных явлений, далеко выходило за эти рамки. Вынуждаемые необходимостью задавать вопрос почему, греческие философы искали и создавали научные теории. Хотя наши современные стремления проверять все с помощью эксперимента и богатство научного оборудования привели к огромным изменениям в наших представлениях, мы по-прежнему разделяем восторг греков перед теорией, которая «предвосхищает явления».

В этой главе рассказано о некоторых греческих ученых. Посмотрим, как создавались их теории.

Древнегреческая астрономия

Свыше 3000 лет назад, когда происходило развитие греческой цивилизации, поэты (и среди них великий Гомер) слагали повествования о существовавших прежде государствах и пытались ответить на некоторые вопросы об устройстве мира. Землю тогда считали островом, омываемым большой рекой и накрытым, как огромным колоколом, небесным сводом. Обитель богов находилась на «краю Земли». Ад (страна мертвых) также находился на краю Земли или, возможно, под Землей. Солнце ежедневно поднималось из омывающей Землю реки и скользило затем по лежащему над Землей небосводу.

Около 2500 лет назад появились ученые, пытавшиеся создать разумное описание окружающего мира.

Фалес (~ 600 г. до н. э.) был основоположником греческой науки и философии. Впоследствии его репутация как одного из «семи мудрецов» стала столь легендарной, что ему начали приписывать невероятные открытия, вроде предсказания солнечного затмения. Фалес собрал все, что было сделано до того времени в области геометрии (вероятно, это были сведения, почерпнутые в Египте), и привел геометрию в некую систему принципов и выводов, т. е. положил начало той науке, которую Евклид привел к расцвету.

Фалес считал, что Земля — плоский диск, плавающий на воде; однако он знал, что Луна светится отраженным солнечным светом. Следовательно, он размышлял над наблюдаемыми явлениями, стараясь понять причины, их обусловившие. Предполагают, что Фалес знал о том, что магнитный железняк, природный магнит, может притягивать железо; считают также вероятным, что он открыл появление электрических зарядов при натирании янтаря (по-гречески янтарь — «электрон»). Более того, он предложил общее объяснение устройства Вселенной. Фалес считал, что вода — это «высший принцип», исходное вещество, из которого построено все остальное. Это было смелое начинание в «натурфилософии». Фалес был истинным ученым, ибо считал, что строение Вселенной можно объяснить на основе обычных знаний и рассуждений.

Тогда считалось, что звезды прикреплены к вращающейся сфере. Фалес обнаружил наклон эклиптики, т. е. годовой траектории Солнца относительно звезд. Такое отделение годового движения Солнца от суточного было очень важным шагом. Звездный пояс вдоль траектории Солнца был разделен на двенадцать равных частей, «знаков зодиака», каждая из которых носила название определенного созвездия. Траектории Луны и планет очень близки к траектории Солнца, поэтому и они также проходят через знаки зодиака.

Фиг. 23. Вселенная по представлению Фалеса.

Фиг. 24. Ежегодный путь Солнца по звездному небу согласно представлениям древних греков.

Плоскость эклиптики составляет угол с плоскостью экватора. Солнце показано в положении, соответствующем середине лета, другие положения также указаны на рисунке. Небесная сфера не вращается, она как бы скреплена с Полярной звездой.

Пифагор (~ 530 г. до н. э.). Ко времени основания Пифагором философской школы (в области религии, науки, политики…) была подготовлена почва для восприятия представления о шарообразности Земли. Рассказы путешественников о кораблях и звездах должны были бы навести любознательных на мысль о том, что Земля имеет кривизну. Однако в представление о Земле как о шаре трудно было поверить. Вы принимаете это представление легко, ибо оно внушалось вам с детства, а вот понаблюдайте за ребенком, который впервые узнает об антиподах, жителях противоположного полушария, где люди ходят по отношению к нам «вниз головой»! Сам Пифагор, вероятно, считал Землю круглой, но нам неизвестно. принадлежала ли большая часть открытий Пифагору или его ученикам; школа его процветала примерно двести лет.

Последователи Пифагора представляли себе Землю шарообразной, сплошь населенной и окруженной концентрическими прозрачными сферами, на каждой из которых находилось небесное тело. На самой внутренней сфере — Луна, которая, очевидно, ближе к Земле, чем остальные светила. Внешняя сфера содержала звезды, а промежуточные сферы — Меркурий, Венеру, Солнце, Марс, Юпитер и Сатурн. Внешняя звездная сфера совершала полный оборот в течение дня и ночи; другие сферы вращались несколько медленнее, что обусловливало запаздывание движения Солнца, Луны и планет. Это была простая научная теория с простой схемой вращающихся сфер (сферы, постоянные скорости вращения), о которой можно было сказать, что она основана на простом общем принципе (сферы — это «совершенные» формы, а постоянные вращения — «совершенные» движения). Сферы, несущие планеты, располагались в соответствии со скоростями вращения последних: Сатурн, движущийся почти так же, как звезды, отстающий от них только на один оборот за тридцать лет, помещался сразу за звездной сферой; затем шли Юпитер, Марс и Солнце; Венера и Меркурий помещались непосредственно внутри или вне сферы Солнца. Такое расположение светил по скоростям было удачной догадкой. Теперь известно, что Сатурн, Юпитер и Марс — это «внешние» планеты, отстоящие от Солнца дальше, чем Земля, причем Сатурн — наиболее удаленная планета, а Марс — ближайшая.

Фиг. 25. Небесная сфера по представлению Пифагора.

Школа Пифагора считала Землю сферической и отличала суточное движение звезд, Солнца, Луны и планет от медленного движения этих светил вспять по отношению к звездному небу. 

Фиг. 26. Система хрустальных сфер по представлениям древних греков.

Выделены вращающиеся сферы двух планет, увлекаемые сферой звезд, совершающей полный оборот в течение суток

Фиг. 27. Сечение всей системы хрустальных сфер в плоскости эклиптики.

Некоторые последователи Пифагора считали, что вращение за 24 часа можно дробить на части, и предполагали поэтому, что внешняя звездная сфера увлекает за собой при своем вращении все другие сферы. Внутренние сферы должны медленно вращаться в обратном направлении внутри внешней сферы, увлекая, таким образом, Солнце, Луну и планеты к зодиакальному поясу звезд. Каждая внутренняя сфера имеет свою собственную скорость, один оборот в год в случае Солнца, один в месяц в случае Луны…. один в двенадцать лет в случае Юпитера….

Пифагор сделал несколько открытий в области геометрии. Хотя теорема о «квадрате гипотенузы» была известна задолго до него, он первый дал ее вывод. Пифагор развил также теорию чисел. Он учил, что «числа — это сущность вещей», основа всех знаний о природе, и его школа уделяла много внимания арифметическим свойствам чисел и их применениям в науке. Он придавал некоторым числам мистические значения, которые волновали воображение людей за много лет до него и еще долго после. Среди первобытных людей некоторые числа считались счастливыми, а некоторые — несчастливыми, и им придавали магические свойства. Впрочем, до наших дней маститые ученые при обсуждении структуры атомов и структуры Вселенной пользуются термином «магические числа»[16]. Мистицизм Пифагора проявлялся вновь и вновь в ходе развития науки. Недалекие люди осуждают этот мистицизм, считая его коварным утесом, который может вызвать крушение корабля науки, большинство же приветствуют его как спасительный буй, который может поддерживать на поверхности плодотворные теории, когда движение вперед кажется трудным. В наши дни неспециалисту трудно провести различие между полезным мистицизмом (таким, например, как представление о положительном электроне и об «антивеществе») и эксцентричной чепухой. Различие, однако, достаточно резкое: современный ученый, даже когда он настроен весьма мистически, пользуется ясным словарем, составленным из четко определенных терминов, значение которых согласовано между ним и его коллегами; и он не только проводит эксперименты для проверки и подтверждения своих предположений, но настаивает на критическом исследовании надежности экспериментальных данных. Человек с причудами может ссылаться на эксперимент, соответствующий его целям, но ему не удается завоевать доверие с помощью предвзятого выбора. Среди ученых существует некое общее здравомыслие, не ограничивающее плодотворное воображение, а направляющее его в разумные каналы.

Пифагор был здравомыслящим ученым. Развивая науку в музыке (области прекрасной с точки зрения изучения свойств чисел), он приписал простые числовые соотношения музыкальным тонам. Эти соотношения сохранились и поныне: чтобы две ноты, отстоящие друг от друга на октаву, звучали абсолютно в тон, они должны иметь частоты колебаний, — относящиеся как 2:1, а частоты нот, отстоящие друг от друга на квинту, должны относиться как 3:2. Чтобы такие же гармонические интервалы давали струны арфы: различной длины, частоты их тоже должны находиться в соотношении 2:1 для октавы и 3:2 для квинты. Другие простые соотношения частот, например 4:3, дают приятный аккорд, а сложные отношения, вроде 4,32:3,17, звучат неприятно (диссонансом) для нашего слуха, воспитанного на классической музыкальной гамме. Представление об основных гармонических пропорциях было распространено Пифагором и на астрономию. Его последователи считали, что сферы, содержащие планеты, располагаются в соответствии с музыкальными интервалами: их размеры и скорости, вращения должны удовлетворять простым числовым соотношениям. Вращаясь с соответствующей скоростью, каждая сфера издает музыкальный тон. Вея система сфер образует гармонию, «музыку сфер», неслышную обычным людям; впрочем, многие считали, что чести ее слышать был удостоен великий учитель Пифагор. Но по тем временам даже эта фантастическая схема не была антинаучной. Научными данными тогда почти совсем не располагали; расстояния от Земли до Солнца и планет не были известны, и не было даже надежды их измерить, так что небесные гармония лишь усиливали интерес к этим проблемам. Спустя восемь веков один романтически настроенный историк писал: «Пифагор считал, что Вселенная звучит и устроена в соответствии с гармонией; он первый свел движение семи небесных тел к ритму и звучанию»[17].

Филолай. Солнце, Луна, Венера, Меркурий, Марс, Юпитер, Сатурн — семь планет в том порядке, как их перечисляли греки, — все медленно движутся среди звезд с запада на восток. Звезды же увлекают за собой все ежедневно с востока на запад. Это несоответствие, портившее всю простоту схемы, можно устранить, предположив, что вращается Земля, а не звезды, тогда все светила будут двигаться в одном направлении. Филолай, ученик Пифагора, придерживался следующей точки зрения: центром Вселенной является не Земля, а центральный огонь — «сторожевая башня богов»; Земля вращается вокруг этого огня, совершая за сутки полный оборот по малой орбите, причем ее обитаемая часть всегда обращена в противоположную сторону от этого центрального огня.

Это движение Земли объясняло ежедневное движение звезд на небе: внешняя хрустальная сфера при этом могла покоиться. (Были еще более далекие предположения — между Землей и центральным огнем находится еще одна планета, которая предохраняет антиподов от ожога, а быть может сама есть антипод; наличие этой планеты увеличивало общее число небесных тел до священного числа Пифагора — десяти.)

Столь фантастическая схема была весьма революционной: согласно ей Земля рассматривалась как планета, а не как божественный центр, и вращение звездной сферы можно было свести к ежедневному вращению Земли. Эта схема могла бы послужить основой для более поздних теорий движения Земли, но просуществовала она недолго и в ней никогда не предполагалось, что центром центром мироздания является Солнце или что Земля просто вращается. Эта последняя простая идея вскоре была высказана, но не встретила поддержки.

Последователи Пифагора знали, что Земля круглая. Они основывали свои предположения на простом принципе (совершенство сферы) и на фактах. Движение небесных тел они описывали с помощью простой схемы, которую можно было назвать теорией, в противоположность более точным повседневным правилам, развитым в Вавилоне. Если рассматривать эту первую греческую систему вращающихся сфер как некую машину, выдающую предсказания, то она была безнадежно неточной, зато как система знаний оказалась действительно превосходной, ибо давала ощущение разумности устройства Вселенной.

Фиг. 28. Схема Филолая.

а — система сфер; б — схема орбит. Земля вращается вокруг центрального огня, совершая полный оборот за 24 часа Этим объясняется суточное движение звезд, Солнца, Луны и планет. Сферы медленно вращаются в том же направления, на них находятся Солнце, Луна и планеты.

Сократ (~ 430 г. до н. э.). Этот великий философ боролся за ясность мышления и четкие определения, осуждая сумасбродные фантазии астрономов. Вероятно, именно он помог астрономии стать индуктивной наукой, основанной на экспериментальных наблюдениях.

Примерно в то же время два философа, Демокрит и Левкипп, пытались создать атомистическую теорию, чтобы объяснить свойства материи и даже строение мира в целом. Они считали невероятным, что материю можно беспредельно делить на все более мелкие части. Должны существовать крошечные неделимые атомы. Хотя у этих ученых не было экспериментальных доказательств и они основывались лишь на фантастических предположениях, им удалось создать теорию, которая выглядит разумной и в наши дни[18].

Они подготовили атомистическую теорию, над которой задумывались и которой иногда пользовались на протяжении многих веков, пока развитие человеческих знаний в области химии не привело в течение последних двухсот лет, наконец, к созданию атомной теории. Их записи были утеряны, но римский поэт Лукреций изложил двумя столетиями позже эти идеи в своей великолепной поэме. Он считал, что «разум освобождает человека от страха перед богами» — поэтическая версия современной точки зрения о том, что «наука излечивает от суеверий».

Хотя атомистическая теория не была непосредственно связана с астрономией, однако высказывавшееся в ней утверждение о том, что атомы отделены друг от друга пустотой, позволило легче усвоить представление о пустом пространстве между небесными телами и за ними, в противоположность представлению древних греков о том, что пространство ограничено и заполнено невидимым эфиром.

Платон (~ 390 г. до н. э.), строго говоря, не был астрономом. Он считал правильной простую схему сфер и размещал по порядку их скоростей вращения: Луну, Солнце, Меркурий и Венеру, движущиеся вместе с Солнцем, Марс, Юпитер, Сатурн. Первая схема, которая, казалось, успешно описывала движения планет, была создана Евдоксием, возможно по предложению Платона.

Евдоксий (~ 370 г. до н. э.) изучал геометрию и философию под руководством Платона, затем путешествовал по Египту и, возвратившись в Грецию, стал великим математиком и основателем научной астрономии. Собирая греческие и египетские данные по астрономии и добавляя лучшие из наблюдений, проведенных в Вавилоне, он предложил схему, которая могла объяснить наблюдаемые явления.

Система из нескольких сфер, по одной для каждого движущегося небесного тела, очевидно была неудовлетворительной. Планета не движется с постоянной скоростью по круговой траектории относительно звезд, она движется то быстрее, то медленнее, даже временами останавливается и начинает двигаться в обратном направлении. Солнце и Луна движутся по своим, годовым и месячным траекториям с переменными скоростями[19]. Евдоксий разработал схему, состоящую из большого числа концентрических сфер, подобно шелухе луковицы. Каждой планете соответствовало несколько сфер, расположенных одна внутри другой и вращающихся вокруг различных осей: по три сферы для Солнца и Луны, по четыре для каждой планеты и одна внешняя сфера для всех звезд. Каждая сфера закреплена на оси, которая проходит через отверстие в следующей сфере, и расположена вне, причем оси вращения имеют различные направления. Комбинированные движения с надлежащим образом выбранными направлениями вращения соответствуют наблюдениям. Такая система была проста по форме (сферы) и основана на простом принципе (равномерное вращение); она могла удовлетворительно объяснить наблюдаемые факты путем введения, по мере необходимости, добавочных сфер. Это была в самом деле хорошая теория.

Чтобы создать хорошую теорию, мы должны располагать простыми принципами или допущениями и должны уметь вывести из них схему, достаточно разумно объясняющую все факты. Полезность теории и эстетическое наслаждение, которое мы в ней находим, зависят как от простоты принципов, лежащих в ее основе, так и от того, насколько точно она соответствует фактам. Делая предсказания, мы ожидаем, что они окажутся плодотворными, но часто плодотворность обусловлена двумя достоинствами — простотой и точностью. Для ученых Греции, да и для многих современных ученых, хорошая теория — это просто теория, которая может точно объяснить все явления. Оценивая качества той или иной теории, следует спросить: «Настолько ли она проста, насколько это возможно?» и «Насколько точно она объясняет явления?».

Если мы спросим также: «Правильна ли она?», то это не вполне справедливое требование. Мы могли бы составить истинную историю движения планет, описывая их положения день ото дня за последние 100 лет; наше описание было бы верным, но настолько далеким от простого, настолько бесхребетным, что мы должны были бы его назвать просто перечнем фактов, а не теорией[20].

Фиг. 30. Схема Евдоксия.

Солнце, Луна и планеты имеют несколько сфер, вращающихся с постоянной скоростью вокруг различных осей. Комбинация этих движений имитирует видимые движения Солнца, Луны и планет на звездном небе. 

Первоначальные представления греков о хрустальных сферах были похожи на мифы или сказки для детей; это было простое объяснение явлений, созданное учеными для простых людей. Однако Евдоксий попытался придумать такую модель, которая описывала бы действительное движение планет и предсказывала бы их будущее. По всей вероятности, он рассматривал свои сферы как геометрические конструкции, а не как реальные небесные тела, поэтому для него не представляло труда вообразить, что существует несколько дюжин таких сфер, плавно вращающихся одна внутри другой. Он не указывает механизма, обеспечивающего вращательное движение сфер; можно считать, что эти движения осуществляются богами или же просто существуют в воображении математиков.

Вот как Евдоксий объясняет движение планеты с помощью четырех сфер.

Планета укреплена на внутренней сфере, где-то на ее экваторе. Внешняя из четырех сфер вращается вокруг идущей с севера на юг оси, совершая полный оборот за 24 часа, что объясняет суточное движение планеты со звездами. Следующая внутренняя сфера вращается вокруг оси, закрепленной во внешней сфере и наклоненной под углом 231/2° с севера на юг, так что ее экватор является эклиптикой Солнца и планет. Эта сфера вращается в собственном «году планеты» (время, в течение которого планета обходит зодиак), так что ее движение соответствует общему движению планеты относительно звездного неба[21]. Эти две сферы эквивалентны двум сферам простой системы — внешней звездной сфере, которая увлекает за собой все внутренние, и собственной сфере планеты. Третья и четвертая сферы совершают одинаковые и противоположно направленные вращения вокруг осей, наклоненных одна к другой под некоторым малым углом. Ось третьей сферы вращается в зодиаке второй, а четвертая несет саму планету, как бы вставленную в экватор. В результате сложения всех этих движений планета движется по петлеобразной траектории. Полную картину этого трехмерного движения трудно наглядно представить.

С помощью всего 27 сфер Евдоксий построил систему, хорошо имитирующую наблюдаемые движения планет. Основой его схемы являлись простые сферы, вращавшиеся с неизменными скоростями вокруг общего центра — Земли. Построение этой системы потребовало сложных математических вычислений: надо было рассмотреть четыре движения для каждой планеты и выбрать надлежащим образом оси и скорости вращения, чтобы получить соответствующие наблюдениям результирующие движения. Эту задачу удалось решить с помощью сложных геометрических построений. Евдоксий пользовался в некотором роде гармоническим анализом (в трехмерной форме!) за две тысячи лет до Фурье. Это была хорошая теория.

Хорошая, но не очень. Евдоксий знал, что его система несовершенна и что более точные наблюдения приводят к дальнейшим затруднениям. Очевидный выход из положения — увеличение числа сфер — был использован его последователями. Один из его учеников, посоветовавшись с Аристотелем, добавил еще 7 сфер, что значительно улучшило согласие с наблюдаемыми фактами.

Фиг. 31. Часть схемы Евдоксия.

Четыре сферы, описывающие движение планеты. Внешняя сфера совершает один оборот за 24 часа, следующая внутренняя сфера совершает один оборот за планетный «год». Две внутренние сферы вращаются с одинаковыми и противоположно направленными скоростями, совершая оборот в течение одного земного года, что определяет петлеобразную траекторию планеты

Например, изменения в движении Солнца, обусловливающие различие времен года, можно было после этого усовершенствования предсказать надлежащим образом. Самого Аристотеля беспокоило то, что сложное движение, совершаемое четверкой сфер одной планеты, должно передаваться соседней четверке планет, хотя это было нежелательно. Он ввел дополнительные сферы, чтобы «развязать» движение планет, так что в результате получалось всего 55 сфер. Этой системой пользовались в течение столетия или даже больше, пока не была предложена более простая геометрическая схема (один энтузиаст пытался восстановить ее спустя 2000 лет, введя 77 сфер).

Аристотель (340 г. до н. э), великий учитель, философ и ученый-энциклопедист, был «последним великим философом-созерцателем в античной астрономии». Он был очень религиозен и верил в то, что на великолепных усеянных звездами небесах существует бог. Он восхищался астрономией и уделял ей много времени. Поддерживая схему концентрических сфер, он выдвигал следующий догматический довод: сфера — идеальная форма. Этот предвзятый взгляд на орбиты планет существовал в течение столетий. По той же причине считалось, что Солнце, Луна, планеты, звезды должны иметь сферическую форму. Небеса, таким образом, есть область совершенства, неизменного порядка и круговых движений. Пространство между Землей и Луной Аристотель считал подверженным изменениям с естественной тенденцией к падению тел по вертикали.

На протяжении многих веков сочинения Аристотеля представляли собой единственную попытку систематизировать природу в целом. Они переводились с одного языка на другой, передавались из Греции в Рим и Аравию и снова через несколько столетий в Европу для переписки, перепечатки, изучения и цитирования как авторитетный источник. Долгое время после того как хрустальные сферы были отвергнуты и заменены эксцентрическими кругами, об этих последних говорили как о сферах; средневековые схоласты то и дело возвращались к хрустальным сферам в своих дискуссиях и считали эти сферы реальными. Различия между совершенными небесами и подверженной изменениям Землей оставались столь значительными, что спустя 2000 лет Галилей вызвал огромное возмущение, доказав существование гор на Луне и предположив, что Луна подобна Земле. И даже Галилей, понимая законы движения, все же считал, что падение тел на Земле трудно связать с вращением небесных тел.

Аристотель сделал много, чтобы доказать, что Земля круглая. Для этого он приводил следующие соображения:

1) Симметрия: сфера симметрична и совершенна.

2) Давление: составные части Земли, стремясь упасть естественно к ее центру, сжимают ее в виде шара.

Упоминались также следующие факты:

3) Тень: при затмении Луны край тени Земли, падающей на Луну, всегда имеет круглую форму, тогда как плоский диск отбрасывал бы овальную тень.

4) Высота звезд на небосводе: даже при коротких путешествиях на север или на юг путешественник замечает изменения положения созвездий.

Эта смесь догматических «рассуждений» и основанного на эксперименте здравого смысла типична для Аристотеля; он сделал очень много для развития науки. Его учение — замечательный труд всей его жизни — имело большой резонанс и оказало огромное влияние на дальнейшее развитие науки. С одной стороны, он систематизировал научные факты и зафиксировал будоражащие мысль вопросы; с другой стороны, выявил основные проблемы научной философии, проведя различие между истинными физическими причинами вещей и воображаемыми схемами, создаваемыми для объяснения явлений.

Фиг. 32. Доказательства шарообразности Земли.

а — корабли исчезают за линией горизонта; б — когда наблюдатель едет на север, Полярная звезда занимает все более высокое положение, положение других звезд меняется, а некоторые звезды, находящиеся на юге, исчезают из поля зрения; в — тень Земли, падающая на Луну во время затмения, имеет круглую форму, а не овальную. 

Фиг. 33. Доказательство вращения Земли.

Опыт Комптона — кольцеобразная трубка с водой, содержащая опилки, внезапно переворачивается, по опилкам можно судить, насколько незначительно движение воды, маятник Фуко — длинный маятник, совершающий колебания, медленно меняет плоскость колебаний, гирокомпас — ось вращения маленького гироскопа с грузом устанавливается в направлении с севера на юг.

Вскоре после Аристотеля Евклид собрал все предшествующие работы по геометрии, добавил ряд собственных и создал великолепную науку, развитую с помощью дедуктивной логики. Такого рода математическое построение, разумеется, справедливо по отношению к лежащим в его основе допущениям и определениям. Проверить, насколько оно удовлетворяет законам окружающего мира — задача эксперимента. Поэтому мы не должны подвергать сомнению ту или иную область математики, но и не имеем права считать ее естественной наукой.

Научная школа в Александрии

Александр Великий основал мощную империю. За двенадцать лет он прошел со своими войсками из Греции через Малую Азию, Египет, Персию к границам Индии и обратно к Вавилону. В начале своего похода он основал в устье Нила большой город — Александрию. Здесь собралось много греческих ученых, и Александрийский музей (или Александрийский университет) стал крупным центром просвещения. Школа астрономов возникла примерно в 330 г. до н. э. и процветала в течение нескольких веков. Ученые проводили точные наблюдения, конструировали новые приборы; были попытки измерить расстояние до Солнца и Луны и определить действительные размеры этих светил; создавались новые и более совершенные теории.

До того как эта школа перешла от представления о вращающихся сферах к эксцентрическим кругам, греческий астроном Аристарх (~ 240 г. до н. э.) сделал два упрощающих предположения:

1) Земля вращается, и этим вращением объясняется суточное движение звезд;

2) Земля движется вокруг Солнца совершая полный оборот по орбите в течение года; другие планеты движутся подобным же образом — это объясняет видимые движения Солнца и планет относительно звезд.

Эта простая схема не имела успеха: она противоречила традициям и была лишь идеей, не подкрепленной измерениями, как это сделал много позже Коперник. Возможность движения Земли по орбите вызывала возражения с точки зрения тогдашних представлений о механике, которые впоследствии оказались даже еще более серьезными; кроме того, эта идея немедленно привела к другого рода затруднениям с точки зрения астрономов. Если Земля движется по орбите, имеющей большую протяженность, то в течение года у созвездий должны наблюдаться параллаксы. Между тем таких параллаксов не наблюдалось, и Аристарх мог объяснить этот факт только тем, что звезды удалены от Земли на расстояния, бесконечно большие по сравнению с диаметром земной орбиты.

Таким образом, он не только «поместил» звезды гораздо дальше, чем предполагалось ранее, но и освободил их от необходимости находиться всем на одной большой сфере. Поскольку звезды находятся так далеко, они могут быть рассеяны в пространстве и находиться в покое, в то время как Земля будет вращаться.

Фиг. 34. Схема Аристарха.

а — система сфер; б — схема на которой показаны орбиты планет. Показаны две планеты: P1 — может быть Марсом, Юпитером или Сатурном, Р2 — Меркурием или Венерой.

Измерения размеров и расстояний

Астрономы стали пытаться определить действительные размеры Солнца, Луны и Земли и их взаимные расстояния. Ранее существовали лишь смутные догадки: некоторые считали, что Солнце и Луна находятся очень далеко, — другие же — что они находятся непосредственно за облаками; считали, что Солнце имеет такие же размеры, как Греция, а Луна меньше…. Надежные измерения могли бы превратить астрономию в значительно более реальную науку, но их было трудно осуществить.

Человек обычно определяет расстояние на глаз, оценивая угол между лучами зрения, когда оба глаза направлены на предмет. Наши глаза расположены слишком близко друг к другу, и с их помощью нельзя определять расстояния до предметов, удаленных на большие расстояния. Поэтому мы пользуемся для этой цели более длинной базой и измеренными углами. Затем мы, соблюдая масштаб, строим диаграмму или используем тригонометрию.

Фиг. 35. Соотношение между размерами удаленного предмета и расстояние до него.

Соотношение можно найти, держа монету известных размеров на измеренном расстоянии так, чтобы она закрывала предмет, с помощью этого метода нельзя определить абсолютные размеры или расстояния.

а — схема дана не в масштабе; б — «угловые размеры» Солнца и Луны, нанесенные в масштабе. Измерения показывают, что Солнце и Луна видны с Земли поя углом 1/3°. Тригонометрические таблицы дают соотношение 1:110 для основания и высоты.

Теперь мы знаем, что для Луны база в 1000 миль дает угол всего 1/4°. Для Солнца этот угол равен 1/1600° и его очень трудно измерить даже сейчас, когда наблюдатели располагают большими возможностями.

Размеры Солнца (или Луны) можно просто связать с расстоянием до нас, измеряя угловой диаметр. Держите монету в вытянутой руке, то придвигая ее ближе к глазам, то отодвигая дальше, пока она не закроет солнечный диск. Измерив диаметр монеты и расстояние ее от глаза и определив отношение этих размеров, можно получить отношение диаметра Солнца к расстоянию Солнца от Земли. Это отношение равно примерно 1/110. С помощью прибора можно измерить угол, под которым диаметр Солнца виден с Земли; этот угол почти точно равен 1/2°. Нарисуйте на большом листе бумаги треугольник, угол при вершине которого равен 1/2° и измерьте длину его сторон. Или же воспользуйтесь простыми тригонометрическими соотношениями. Вы найдете, что расстояние от основания треугольника до его вершины приблизительно в 110 раз больше основания. Отсюда следует, что расстояние от Солнца до нас в 110 раз больше его диаметра. Почти то же соотношение справедливо и для Луны — Луна и Солнце кажутся приблизительно равными по величине, что подтверждается полными затмениями Солнца, когда Луна точно закрывает его. Измеряя одну из этих величин — диаметр или расстояние — и пользуясь коэффициентом 110, можно определить другую величину. Обычно измеряют расстояние, оценивая его на глаз.

Фиг. 36. Оценка расстояний.

а — по углу между лучами зрения; б — на основании тoго, что расстояние до Луны, определенное по углу между лучами зрения, позволило бы наблюдателю, находящемуся на расстоянии 1000 миль, заметить разницу в 1/4°. 

Размеры Земли

В первую очередь надо было определить размеры самой Земли, затем выразить другие величины через земной радиус.

Эратосфен (~ 235 г. до н. э.) произвел первые измерения размеров Земли. Он сравнил направление вертикали, проведенной к данному участку поверхности земного шара, с направлением параллельного пучка солнечных лучей в двух пунктах, отстоящих друг от друга на известном расстоянии. Он предположил, что Солнце находится настолько далеко, что все солнечные лучи, достигающие Земли в данный момент, практически параллельны.

Эратосфену надо было проводить одновременные наблюдения в двух отстоящих друг от друга пунктах. Надежных часов, которые можно было бы сравнивать и переносить с места на место, у него не было, поэтому он обеспечивал одновременность наблюдений, выбирая полдень (когда Солнце находится в самом высоком положении) одного и того же дня в пунктах, расположенных на одной и той же долготе. Он проводил наблюдения в Александрии, где работал, и сравнивал их с наблюдениями, проводившимися некогда в Сиене[22], в 500 милях южнее. Наблюдения в Сиене сводились к следующему: в полдень, 22 июня, солнечные лучи, падая в глубокий колодец, достигали, воды и отражались вверх.

Эратосфену было известно об этом из литературных данных. Отсюда следовало, что полуденное Солнце находилось в Сиене в этот день вертикально над головой наблюдателя. Эратосфен измерил в полдень того же дня длину тени, отбрасываемой обелиском в Александрии, и нашел, что направление солнечных лучей составляет 71/2° с вертикалью. Отсюда он заключил, что все солнечные лучи, падающие на Землю, параллельны. В этих опытах вертикали (радиус Земли) имели различные направления. Отсюда следовало, что радиусы Земли в Александрии и в Сиене пересекаются в центре Земли под углом 71/2°. Если этот угол в 71/2° соответствует 500 милям на поверхности Земли, то скольким милям будут соответствовать 360°? Остальное уже сводилось к простой арифметике. Измерить расстояние в 500 миль в те времена было трудно — вероятно, — такие измерения производились военными, чеканившими шаг. Имеются сомнения по поводу единиц, которыми пользовался Эратосфен, но по некоторым сведениям его ошибка была меньше 5 % — замечательный успех столь ранней попытки. Эратосфен пытался также определить расстояния до Солнца и Луны.

Фиг. 37. Определение размеров Земли по Эратосфену.

Размеры Луны и ее расстояние от Земли

Размеры Луны сравнивались с размерами Земли путем наблюдения лунных затмений. Отмечая время, в течение которого тень Земли пересекала Луну, Аристарх нашел, что диаметр тени, отбрасываемой Землей на Луну, в 21/2 раза больше диаметра Луны. Если бы Солнце представляло собой точечный источник света, находящийся на бесконечно большом расстоянии, то Земля отбрасывала бы от падающего на нее потока параллельных солнечных лучей тень, поперечное сечение которой равнялось бы поперечнику Земли. В этом случае мы имели бы:

ДИАМЕТР ЗЕМЛИ = 21/2 ЛУННЫХ ДИАМЕТРА,

или

ДИАМЕТР ЛУНЫ = 2/5 ДИАМЕТРА ЗЕМЛИ,

т. е.

РАССТОЯНИЕ ОТ ЗЕМЛИ ДО ЛУНЫ, РАВНОЕ 110 ЛУННЫМ ДИАМЕТРАМ

= (2/5)∙110 ЗЕМНЫХ ДИАМЕТРОВ

= 44 ЗЕМНЫМ ДИАМЕТРАМ, ИЛИ 88 ЗЕМНЫМ РАДИУСАМ.

Отсюда следует, что если принять радиус Земли равным, согласно Эратосфену, приблизительно 4000 миль, то расстояние от Земли до Луны должно быть равно 350 000 миль. Предположение, что Солнце находится на бесконечности, представляется разумным, однако было бы неправильно считать его точечным источником, и Аристарх, конечно, это знал. Солнце — огромный пылающий шар, и поэтому тень от Земли (или другой планеты), на которую падает поток солнечных лучей, будет иметь коническую форму (с углом раствора ~ 1/2°). При полном солнечном затмении Луна может лишь закрыть Солнце от наших глаз, причем конус лунной тени будет кончаться практически у Земли. На расстоянии от Луны до Земли тень от Луны суживается на целый лунный диаметр.

При лунном затмении ширина земной тени, отбрасываемой на то же расстояние (от Земли до Луны), должна уменьшиться на ту же величину, т. е. на лунный диаметр. Аристарх рассуждал следующим образом:

ДИАМЕТР ЗЕМЛИ — ОДИН ДИАМЕТР ЛУНЫ = 21/2 ДИАМЕТРАМ ЛУНЫ,

т. е.

ДИАМЕТР ЗЕМЛИ = (1 + 21/2) ДИАМЕТРАМ ЛУНЫ

= 7/8 ДИАМЕТРА ЛУНЫ

или

РАССТОЯНИЕ ОТ ЗЕМЛИ ДО ЛУНЫ = 110 ДИАМЕТРАМ ЛУНЫ

= (2/7)∙(110) ДИАМЕТРАМ ЗЕМЛИ

= 31,4 ДИАМЕТРА ЗЕМЛИ, или 63 РАДИУСАМ ЗЕМЛИ.

Более точные измерения, выполненные Аристархом и его последователями, показали, что расстояние от Земли до Луны равно 60 земным радиусам (что с точностью до 1 % совпадает с современными измерениями), т. е. около 240 000 миль.

Фиг. 38. Измерение размеров Луны (и, следовательно, расстояния до нее) древними греками.

Наблюдения затмений показали, что ширина тени, отбрасываемой Землей на Луну, равна 2,5 диаметра Луны. Однако тень Земли сужается по мере того, как увеличивается расстояние до Земли, потому что Солнце — не точечный источник. Тень Луны почти исчезает на расстоянии от Луны до Земли, поэтому тень от Земли должна сузиться на ту же величину (один лунный диаметр) на этом расстоянии. Следовательно, диаметр Земли должен равняться 3,5 лунного диаметра.

Позднее расстояние от Земли до Луны было измерено следующим образом: наблюдатели на двух удаленных друг от друга пунктах, на одной долготе одновременно наблюдали Луну. Они измеряли угол между направлением, под которым была видна Луна, и между вертикалью в данной местности. Зная эти углы u и v, можно было определить положение Луны, если известно расстояние между пунктами. Большое расстояние измерить древним астрономам было трудно, но можно было воспользоваться вместо этого углом между радиусами Земли, соответствующими двум пунктам. Так что наблюдатель в каждом пункте измерял угол между местной вертикалью и тем направлением, под которым он видит определенную звезду.

Для этой цели подходит Полярная звезда или любая другая, наблюдаемая в своей наивысшей точке. Как показано на фиг. 39, б, сумма двух измеренных углов (х + у) дает угол z в центре Земли. На фиг. 39, в изображены три известных угла u, v, z; известно также, что радиусы R равны. Чтобы найти расстояние от Земли до Луны, можно либо прибегнуть к тригонометрии, либо сделать в масштабе простой чертеж (фиг. 40) на большом листе бумаги (древние астрономы пользовались насыпанным на пол песком) — нарисовать круг и провести радиусы ОА и ОБ, образующие угол z, равный сумме измеренных углов х + у. Нужно продолжить эти радиусы, чтобы они представляли вертикали в пунктах А и В. Из А следует провести линию до Луны АР, измерив угол u, который она образует с радиусом ОА, а из B провести прямую BQ. Точка пересечения этих прямых М определяет положение Луны на диаграмме. Измерив отрезок ОМ и разделяв его на радиус ОА, получим расстояние от Луны до Земли как кратное радиусу Земли.

Фиг. 39. Измерение расстояния от Земли до Луны.

Фиг. 40. Вычисление отношения расстояния до Луны к радиусу Земли на основании измерений.

Точные измерения дают:

РАССТОЯНИЕ ОТ ЗЕМЛИ ДО ЛУНЫ = ОКОЛО 60 РАДИУСОВ ЗЕМЛИ

~= 240 000 миль.

Размеры Солнца и его расстояние от Земли

Расстояние от Земли до Солнца оценить гораздо труднее даже сегодня, ибо Солнце крайне ярко, велико и очень удалено от нас.

Угол между лучами зрения глаз при наблюдении Солнца слишком мал, чтобы его можно было измерить, не прибегая к телескопу. Однако Аристарх придумал остроумную схему, с помощью которой удалось, хотя и очень приближенно, оценить расстояние от Земли до Солнца. Он наблюдал за Луной в той стадии, когда видна точно ее половина (фиг. 41).

Фиг. 41. Расстояние от Земли до Солнца.

Определение расстояния от Земли до Солнца по известному расстоянию от Земли до Луны греческими астрономами. Они пытались измерить угол х (или SEM), который равен приблизительно 90°.

Солнечный свет должен падать на Луну под прямым углом к ЕМ (направлению взгляда наблюдателя). В этот момент наблюдатель измеряет угол между направлениями от Земли к Солнцу и от Земли к Луне. Этот угол, SEM, оказался почти (но не совсем точно) прямым. В большом треугольнике SEM два угла были известны. Третий малый угол, ESM, в основном и определяет расстояние от Земли до Солнца. Он получается вычитанием из 180° и очень мал: по оценке Аристарха он равен 3°, на самом же деле всего 1/6°. Поэтому вывод Аристарха о том, что расстояние от Земли до Солнца примерно в 20 раз больше, чем до Луны, был занижен приблизительно в 20 раз. Это соотношение (расстояние до Солнца)/(расстояние до Луны) получается от рассмотрения углов на чертеже соответствующего масштаба или с помощью очень простой тригонометрии (EM/ES — косинус угла SEM. Поэтому ES/EM = 1/cos LSEM легко находится из тригонометрических таблиц).

Таким образом, астрономам в Александрии были известны приближенные значения размеров небесной системы и этими значениями (с незначительными изменениями) пользовались астрономы в течение многих столетий:

Земля: радиус 4000 миль.

Луна: расстояние от Земли 60 земных радиусов, или 240 000 миль; собственный радиус 1100 миль.

Солнце: расстояние от Земли 1200 земных радиусов (это значение считалось неточным, каким оно и было); собственный радиус 44 000 миль.

Планеты: расстояния до них были совершенно неизвестны, но предполагалось, что все они находятся дальше, чем Луна.

Звезды: расстояния до них также были совершенно неизвестны, предполагалось, что они находятся за Солнцем и планетами.

Из этих оценок видно, что на рисунках, иллюстрирующих затмения, обычно совершенно не выдержан масштаб. Фиг. 42 и 43 дают более близкие к действительности схемы, основанные на современных измерениях. Не удивительно, что затмения происходят столь редко. Призрачных конусов теней можно и не заметить. Орбита Луны наклонена под углом 5° к видимой траектории Солнца, поэтому затмения происходят еще реже.

Фиг. 42. Солнце, Луна, Земля.

Чертеж дан не в масштабе. Солнце расположено слишком близко к Земле. Луна чрезмерно велика и расположена слишком близко к Земле.

Фиг. 43. Конусы теней Луны и Земли (в масштабе).

Более поздние теории

Смелое предположение о том, что Земля вращается и движется вокруг Солнца, не было встречено благосклонно Александрийской школой. По-прежнему оставалось популярным представление о том, что Земля покоится и находится в центре мироздания, однако модель с вращающимися концентрическими сферами была слишком сложной. Не совсем равномерное движение Солнца по «орбите» можно было описать, используя эксцентрическую окружность: согласно этой модели, Солнце движется по такой окружности равномерно. Земля же неподвижна и находится не в центре круга, а на некотором расстоянии от него. При этом, если наблюдать за Солнцем с Земли, будет казаться, что оно движется быстрее в некоторые времена года (примерно в декабре, в точке А) и медленнее на 6 месяцев позднее (в точке В). Это была неплохая теория. Теория должна быть простой и основываться на простых допущениях[23].

Фиг. 44. Схема эксцентрической орбиты Солнца.

Солнце движется по окружности, находясь на конце радиуса; который вращается с постоянной скоростью, как в простейшей системе сфер. Наблюдатель на Земле находится не в центре, поэтому движение Солнца ему кажется неравномерным, как в действительности и происходит — быстрее в декабре, медленнее в июне.

Эти требования удовлетворялись: движение по окружности с постоянным радиусом происходило с постоянной скоростью. Это постоянство было необходимо с точки зрения древних греков, а фактически с точки зрения каждого методически мыслящего ученого. Без него теория превратилась бы в нечто бесформенное.

Поместить Землю не в центре круга означало досадное отклонение от симметрии, но и скорость Солнца при этом оказалась несимметричной — наше лето продолжительнее зимы. Аналогичная схема была пригодна и для Луны, для планет же требовалась более сложная схема. Каждая планета должна была равномерно двигаться по кругу, совершая полный оборот в течение собственного «года» вокруг неподвижной Земли, находящейся не в центре этого круга, а на некотором расстоянии от него, но тогда весь круг, орбита планеты и центр круга должны совершать полный оборот вокруг Земли за 365 дней. Таким образом, к основному вращению добавлялось еще одно (по окружности радиуса ЕС), в результате чего планета двигалась по эпициклоиде. На это движение накладывалось суточное движение всей звездной картины.

В другой схеме, приводившей к аналогичным результатам, вводился неподвижный главный круг (деферент) с радиальным плечом, вращающимся с постоянной скоростью. Конец плеча несет на себе малый круг (эпициклоиду). Радиус этого малого круга несет на себе планету, которая движется с постоянной скоростью, совершая один оборот за 365 дней. Хотя эти схемы оперируют с кругами, в них по-прежнему употребляли термин «сферы». В течение многих столетий астрономы привыкли рассматривать «движение небесных сфер», а сферы сами становились все более и более реальными по мере того, как восхищение греков чистой теорией уступало место детской настойчивости в поисках истины.

Фиг. 45. Схема эксцентрической орбиты планеты.

Каждая планета находится на конце радиуса, который вращается с постоянной скоростью, весь этот круг — центр, радиус и планета совершают один оборот в год вокруг эксцентрично расположенной Земли. Вообразим, что радиус СР продолжен и представляет собой ручку сковородки, сковородка совершает вращательное движение по кругу с малым радиусом ЕС, так как ее вращает вокруг Е, как центра, домашняя хозяйка, которая хочет быстро растопить на ней кусок масла. Заставьте затем ручку СР тоже вращаться — очень медленно, как в случае внешней планеты, подобной Юпитеру.

Больших успехов добился Гиппарх (~ 140 г. до н. э.), «один из величайших математиков и астрономов всех времен»[24]. Он был внимательным наблюдателем, создавал новые приборы и использовал их для определения положения звезд. Он составил звездный каталог, в котором дал классификацию звезд по их яркости и указал положение примерно тысячи звезд, пользуясь понятиями небесной широты и долготы. Насколько известно, Гиппарх создал первый небесный глобус. В те времена телескопов не существовало[25], единственным прибором был человеческий глаз. Для измерения углов служили простые приборы, подобные циркулю. Тем не менее Гиппарх измерял углы с точностью 1/6°. Гиппарх был создателем сферической тригонометрии, он применил ее для исследования Солнца и Луны. Он показал, что эксцентрические круги и эпициклы эквивалентны с точки зрения описания небесных движений.

Добавляя собственные наблюдения к наблюдениям древних греков и вавилонским записям, он разработал системы эпициклов Солнца и Луны. Проделать то же для планет оказалось труднее из-за отсутствия точных данных, и он приступил к новым измерениям.

Исходя из наблюдений греков, сделанных за 150 лет до него, Гиппарх открыл очень малый, но играющий очень важную роль, астрономический сдвиг: «прецессию равноденствий». Во время весеннего равноденствия между зимой и летом Солнце находится в определенном месте зодиака и возвращается в это положение каждый год. Гиппарх обнаружил, что во время следующего весеннего равноденствия Солнце находится не точно в том же участке звездного неба. Оно попадает в тот же участок неба приблизительно на 20 минут позднее; таким образом, в момент, соответствующий равноденствию, Солнце находится еще на пути к данному участку неба, приблизительно на 1/70° ближе через год и почти на 11/2° — по прошествии столетия. Гиппарх обнаружил это явление по разным значениям долготы звезд в старых и новых записях долготы отсчитывались вдоль зодиака от весеннего равноденствия, т. е. от того места, где экватор пересекает эклиптику. Так как все долготы изменялись на один или два градуса за столетие, Гиппарх сделал вывод, что пояс зодиака смещается с этой скоростью по небесной сфере, увлекая с собой все звезды, тогда как небесный экватор и Земля остаются неподвижными[26]. Это движение кажется незначительным — его период составляет 26 000 лет, однако оно существенно для астрономических измерений и всегда учитывалось со времени открытия его Гиппархом. Само это открытие знаменовало вершину успеха наблюдений.

Прецессию было трудно наблюдать, пока Коперник, спустя 16 столетий, не упростил задачу, рассмотрев ее совершенно с иной точки зрения (см. гл. 16). Но и тогда она оставалась необъясненной и вне связи с другими небесными явлениями, пока Ньютон не нашел простого объяснения. Открытая как некий загадочный сдвиг, прецессия превратилась в признак тяготения.

Гиппарх оставил потомству прекрасный звездный каталог, схемы эпициклов и результаты наблюдений планет — бессмертный памятник астроному. Но все эти достижения вынуждены были лежать втуне два с половиной столетия, пока великий математик Птолемей не создал на их основе стройную теорию.

Фиг. 46. Схема эксцентрических орбит.

Показаны орбиты Солнца и планеты Р

Фиг. 47. Схема эксцентрических орбит и схема эпициклов.

а — точка С и круг с радиусом орбиты планеты вращаются вокруг неподвижной Земли; б — Земля остается неподвижной в центре главного круга (деферент). 

Фиг. 48. Траектория планеты в схеме эпициклов.

При комбинации двух круговых движений получается эпициклоида, по которой движется планета.

Фиг. 49. Прецессия равноденствий.

В добавление к суточному движению всего небесного свода вокруг оси, проходящей с севера на юг, и ежегодному движению Солнца по его эклиптическому пути в зодиаке Гиппарх открыл медленное вращение всей звездной картины вокруг оси эклиптики (перпендикулярной к зодиаку)

Птолемей (~ 120 г.) произвел «критическую переоценку наблюдений движения планет». Он собрал работы Гиппарха и его предшественников, добавил свои собственные наблюдения, создал первоклассную теорию и оставил великолепное изложение всей совокупности накопленных астрономических знаний, которая в течение последующих четырнадцати столетий играла решающую роль в астрономии. Положения Солнца, Луны и планет по отношению к неподвижным звездам были нанесены Птолемеем на карту, причем углы были измерены с точностью до доли градуса. Он смог поэтому разработать систему эксцентрических хрустальных сфер и эпициклов, которая не только была так усовершенствована, что точно описывала движение светил в прошлом, но с успехом позволяла предсказывать их будущие положения.

Птолемей создал великолепный математический аппарат, основанный на простых принципах, способный на протяжении веков предвосхищать явления. При этом он не рассматривал хрустальных сфер, а концентрировал свое внимание на вращающемся радиусе, (или «спице»), на конце которого находилась планета и который, вращаясь, как бы увлекал ее за собой. Он изложил всю свою систему движения светил — Солнца, Луны и планет — в трактате под названием «Альмагест».

Птолемей создал следующую картину: звездное небо — это сфера, вращающаяся вокруг неподвижной оси и совершающая полный оборот за 24 часа; Земля должна оставаться в центре небесной сферы, в противном случае звездная картина должна обнаруживать параллакс. Земля — это сфера, которая должна покоиться и тому есть ряд причин: если бы Земля двигалась, предметы, брошенные вверх, должны были бы отставать от нее. Солнце движется вокруг Земли согласно простой эпициклической схеме Гиппарха; Луна движется по более сложной эпициклоиде.

Исследуя «пять блуждающих звезд» — планеты, Птолемей обнаружил, что не может описать их движение простой эпициклоидой. Между теорией и наблюдением существовали расхождения. Он попытался создать схему эпициклов, в которой Земля находилась бы не в центре главного круга, а была бы несколько сдвинута относительно него, т. е. расположена эксцентрично.

Этого оказалось недостаточно, и Птолемей построил схему, в которой не только расположил Землю эксцентрично, но и сдвинул центр равномерного вращения в противоположную сторону. Он предложил схему, приведенную на фиг. 50, которая успешно описывала движения Солнца, Луны и планет. В его схеме С — центр главного круга, Е — Земля, расположенная эксцентрично; Q — точка, находящаяся на таком же расстоянии от С по другую сторону (QC = CE). Плечо QA вращается с постоянной скоростью вокруг Q, описывая равные углы за равные промежутки времени и неся на себе центр А маленького круга, эпицикла, который движется таким образом по главному кругу. Радиус эпицикла АР и, следовательно, планета Р, вращается с постоянной скоростью. Это была отчаянная, но успешная попытка подтвердить справедливость схемы кругов, вращающихся с постоянной скоростью.

Фиг. 50. Система Птолемея.

Эта система очень точно описывает движения Солнца, Луны и планет.

Птолемей был вынужден считать, что плечо главного круга также вращается с постоянной скоростью. Этим плечом не мог быть проведенный из центра радиус, как в простой эпициклической схеме. Им не мог также быть и радиус, проведенный из точки Е. Но можно было спасти положение, взяв плечо, проведенное из равноудаленной точки Q, вращающейся с постоянной скоростью. Таким образом, для главного круга каждой планеты имелись три точки, расположенные близко друг к другу, каждая с характерными свойствами:

Е — Земля неподвижна

С — Центр главного круга с плечом СА постоянной длины

Q — Равноотстоящая точка с плечом QA, вращающимся с постоянной скоростью

Подбирая подходящие радиусы, скорости вращения и расстояние ЕС (= CQ), Птолемей смог составить схему для всех планет (для Меркурия потребовался еще один дополнительный круг).

Для каждой планеты главному кругу придавался различный наклон и сам эпицикл имел наклон по отношению к главному кругу. Это была сложная система главных и вспомогательных кругов с различными радиусами, скоростями, наклонами и эксцентриситетами различной величины и направлений. Эта система, работающая подобно сложному передаточному механизму, позволяла из года в год точно предсказывать положения планет и определять эти положения в прошлом. Подобно хорошей системе механизмов, она была основана на простых принципах: круги с постоянными радиусами, вращение с постоянной скоростью, симметрия эквантов (равноотстоящих от центра точек: QC = CE), постоянные наклоны кругов[27] и неподвижная Земля.

В «Альмагесте» Птолемей подробно описал схемы для каждой планеты и дал таблицы, по которым можно было определить движение каждого небесного тела. Книга была скопирована (разумеется, от руки), переведена с греческого на латинский, арабский и затем опять на латинский, по мере того как культура продвигалась на Восток, а затем опять в Европу. Существуют современные печатные варианты этой работы с переводами. Книга эта в течение столетий служила руководством для астрономов и справочником для мореплавателей. На основе содержащейся в ней информации развивалась астрология — специфическое скопление человеческих страхов, надежд, стремлений к наживе, которая нуждалась в подробных сведениях о положениях планет.

Схема Птолемея была эффективной и достаточно разумной. Мы можем сказать то же самое о нашей современной атомной и ядерной физике. Истинны ли эти теории? И древние греки, и современные ученые стали бы возражать против такой постановки вопроса; однако если бы вы предложили более простую и более плодотворную теорию, они приветствовали бы ее.

Фиг. 51. Система Птолемея для Солнца S и двух планет Р и Р'.

Е — неподвижная Земля; С — центр круга; Q — равноудаленная точка = СЕ.

Задача

Опишите своими словами и расскажите, используя диаграммы, о методе, применявшемся греками для определения

а) радиуса Земли;

б) расстояния от Земли до Луна;

в) расстояния от Земли до Солнца.