Глава 15. Пробуждение любознательности

[Архангел Рафаил обсуждает с Адамом различные взгляды на строение Вселенной.]

______

Что было бы, если б дневное светило

Стояло в средине всей зримой вселенной,

А звезды другия, свершая движенье,

Вращались кругом в направленьях различных?

Ты видишь теперь, как свершают движенье

Шесть первых планет в их теченьи неравном,

То в выси, то низко, то двигаясь скрытно,

То выдавшись, или ж стоят неподвижно,

Что ж было бы, если б седьмая планета,

Земля, представляясь тебе неподвижной,

Имела б троякого рода движенье?

Джон Милтон, Потерянный рай, книга VIII, 1667 г.[28]

Такой была созданная Птолемеем картина строения Вселенной — сложной, неуклюжей системой; однако долгое время ею с успехом пользовались. Вам она может показаться неестественной и даже немыслимой, но Птолемею и многим после него невероятной казалась противоречащая ей схема, согласно которой Земля вращается вокруг Солнца. Ведь если Земля движется, то предметы будут сбрасываться с нее при вращении или отставать от нее при движении. Ближайшие из неподвижных звезд должны менять свои видимые положения при движении Земли по орбите в течение полугода.

Наивным представлениям о природе движения суждено было дожидаться учения Галилея и ясного мышления Ньютона, чтобы рассеялся туман первого возражения. Второе возражение оставалось бы в силе, если бы звезды не обнаружили абсолютно никаких параллаксов. Мы знаем теперь, что параллаксы существуют, но они слишком малы и их нельзя наблюдать без достаточно точных приборов, и первые успешные наблюдения были проведены в 1832 г. Упомянутые выше возражения против гелиоцентрической гипотезы отступали на задний план перед еще одним возражением, которое возникало, казалось, естественным образом из человеческой психологии, из свойственного человеку эгоцентризма.

Земля, на которой Мы живем, должна быть центром Вселенной — другие небесные тела должны вращаться вокруг Нас[29]. Эта точка зрения, подкрепленная наблюдениями, легко находила поддержку как в наивном эгоцентризме, так и в учениях греческих философов. Поэтому мы не должны удивляться тому, что система Птолемея, согласно которой Земля с живущими на ней людьми являлась центром Вселенной, считалась правильной на протяжении всего средневековья, пока с наступлением эпохи Возрождения людей, мышление которых становилось все более гибким и пытливым, не стали тревожить различные вопросы.

Точка зрения, согласно которой не Солнце вращалось вокруг Земли, а Земля вокруг Солнца (гелиоцентрическая система), высказывалась некоторыми греческими астрономами и обсуждалась на протяжении нескольких веков (с XII по XV) то тем, то другим философом или священнослужителем как нереальная теория и не встречала сколько-нибудь значительной поддержки.

В систему Птолемея верили и считали ее единственно правильной на протяжении примерно тысячи лет. Население Европы интересовалось наукой только как базой для словесных дискуссий; новые принципы получали права гражданства не на основе экспериментальных данных, а благодаря логическим умозаключениям, опиравшимся на авторитетные источники. Влияние церкви все возрастало, просвещение всецело зависело от нее, наука тоже находилась во власти ее догм. Любые диспуты, даже простой призыв к эксперименту, к проведению каких-либо наблюдений, могли бы вызвать к жизни ряд волнующих вопросов, угрожавших непреложности установленных церковью законов. В те времена, когда церковь повседневно направляла и наставляла простой народ, а короли и дворянство управляли с ее помощью, такого рода покушения на рутину встречались в штыки.

В течение десяти веков со времени создания греческой астрономии до первых научных экспериментов возникали те или иные теории, но работы этих ученых остались неизвестными. После многовекового темного царства средневековья забрезжил свет.

Английский монах Роджер Бэкон (~ 1250 г.) стал взывать о необходимости проведения экспериментов. Он был честным и горячим человеком, нападал на священников и философов, настаивал на том, что накапливать знания необходимо на основе фактов, а не корпеть над скверными латинскими переводами. В своих книгах он клеймил невежество и предрассудки, призывая людей: «Перестаньте подчиняться догмам и авторитетам; взгляните на мир!»

Его резкое поведение послужило причиной конфликта с его собратьями монахами и с церковью. Учение Роджера Бэкона, по всей вероятности, было под запретом, а его книги, как и книги его единомышленников, на долгое время были забыты. Бэкон на столетия опередил свое время. (Жившему много позднее Фрэнсису Бэкону приписывали новый подход к науке. Однако вряд ли его вклад был более значителен.)

Двумя столетиями позже появился Леонардо да Винчи (~ 1480 г.) — великий художник, мыслитель и ученый. Занимаясь механикой, он классифицировал понятия массы, силы, движения, он высказал новые научные представления и создал искусные модели. Его знаменитые заметки являются сокровищницей изобретений в области механики и едва ли не самых прекрасных в истории искусства рисунков. Составляя эти заметки, он выступал как в роли историка, так и в роли пророка, занося в них интересные идеи, свои и чужие, и остроумные схемы, которые он придумывал. Это было началом нового подхода к науке, того, о котором мечтал Роджер Бэкон.

Тем временем накапливались астрономические данные, в том числе наблюдения арабских астрономов и др. Нужды медицины и мореплавания дали толчок развитию науки в эпоху Возрождения.

Альфонсо X, Кастильский (~ 1260 г.) приказал своей школе навигаторов составить новые таблицы для предсказания движений небесных тел. Эти таблицы были составлены, отпечатаны лет через 200, и ими пользовались еще сотню лет. Ходили слухи, что когда Альфонсо Кастильскому впервые объяснили сложную систему Птолемея, он сказал, что если бы при сотворении мира посоветовались с ним, он сделал бы все значительно проще и лучше.

Ученые провели дополнительные измерения, и система Птолемея была усовершенствована с математической точки зрения, но даже в эпоху раннего Возрождения гелиоцентрическая гипотеза не рассматривалась серьезно до тех пор, пока Коперник не написал свою знаменитую книгу. Через все времена с эпохи Возрождения и до наших дней великая плеяда ученых создавала механику от туманных средневековых воззрений до современного состояния точной и совершенной науки, используя при этом Солнечную систему (а позднее атом) как огромную лабораторию, в которой отсутствует трение. Нас интересуют не только достижения этих ученых в области физики, но и взаимоотношение их деятельности с жизнью и воззрениями других людей. Поэтому мы дадим не только описание их деятельности, но и краткие биографии.

Сначала приведем краткие справки, демонстрирующие вклад каждого из них в науку. (В этих характеристиках, как и прежде, мы указываем не даты рождения или смерти, а те годы, когда данному лицу было около 40 лет.)

Николай Коперник (~1510 г.). Предполагал, что гелиоцентрическая система планет проще птолемеевой. Написал большую книгу, в которой подробно обосновал такую систему, вычислил ее размеры и прочее. После его смерти эта точка зрения получила дальнейшее распространение и развитие, но еще долгое время не была общепризнанной.

Тихо Браге (~1580 г.). Горя желанием узнать как можно больше о планетах, стал блестящим наблюдателем, гениальным изобретателем точных приборов. Построил первую большую обсерваторию. Знал о гипотезе Коперника, но не принимал ее целиком; не особенно увлекался теорией. Составил значительно более точные таблицы планет, чем те, которые существовали до него, их впоследствии дополнил и опубликовал Кеплер.

Иоганн Кеплер (~1610 г.). Прекрасный математик, обладавший тонкой научной интуицией и твердой верой в то, что в основе явлений природы лежат простые правила. Пользуясь наблюдениями своего учителя Тихо Браге, вывел три основных закона движения планет. Однако не смог дать надлежащего объяснения этим законам.

Галилео Галилей (~1610 г.). Провел эксперименты и создал научные основы механики и астрономии. К ужасу классических философов, пренебрегая грозившей ему лично опасностью, провозгласил необходимость твердо держаться эксперимента. С помощью изобретенного им телескопа подтвердил правильность теории Коперника, которую страстно защищал, пока не стал жертвой инквизиции.

Рене Декарт (~1640 г.). Этот французский философ описал картину строения Вселенной, выведенную из общих принципов, которые, по его мнению, созданы богом. Возражал против представления о вакууме и считал, что пространство заполнено вращающимися вихрями, увлекающими за собой планеты. Величайшим вкладом в науку явилось введение в геометрии прямоугольной системы координат: применение графиков позволило связать алгебру с геометрией; заложил основы дифференциального исчисления. Начиная с XVII века создавались большие научные общества для обмена знаниями и стала свободно развиваться наука, основанная на экспериментах.

Исаак Ньютон (~1680 г.). Собрал результаты, полученные до него Галилеем и другими учеными, и сформулировал «законы», суммирующие экспериментальные факты и связывающие массу, движение и силу. Развил понятие силы тяготения, установив закон всемирного тяготения, согласно которому все тела притягиваются друг к другу с силой, обратно пропорциональной квадрату расстояния между ними; показал, что на основе этого закона можно объяснить движение Луны, три закона Кеплера, приливы и отливы и т. п. Таким образом построил великую дедуктивную теорию. В ходе этого ему пришлось в качестве математического аппарата создать основы дифференциального исчисления. Проводил эксперименты и создавал теории и в других областях физики, особенно в оптике.

В течение следующих двух столетий теория тяготения разрабатывалась математиками и физиками, в том числе французскими математиками Жозефом Лагранжем и Пьером Лапласом, по очень незначительному гравитационному действию на другие планеты была открыта новая планета.

Альберт Эйнштейн в начале этого столетия предложил видоизменить и иначе интерпретировать законы механики. Эти изменения, не разрушая представлений Ньютона, позволили объяснить, например, непонятное ранее малое движение перигелия планеты Меркурий или же поведение очень быстро движущихся атомов. Теория относительности не только изменила «рабочие правила» механики; ее огромное значение в том, что она бросает свет на соотношение между экспериментом и теорией, объясняя многие факты, остававшиеся ранее непонятными даже для самых выдающихся ученых.