Глава 5 Связь между напряжением и деформацией[62]

В эту минуту Король, который что-то быстро писал у себя в книжке, крикнул:

— Тихо!

Посмотрел в книжку и прочитал:

— «Правило 42. Всем, в ком больше мили росту, следует немедленно покинуть зал».

И все уставились на Алису.

— Во мне нет мили, — сказала Алиса.

— Нет, есть, — возразил Король.

— В тебе мили две, не меньше, — прибавила Королева.

— Никуда я не уйду, — сказала Алиса. — И вообще, это не настоящее правило. Вы его только что выдумали?

— Это самое старое правило в книжке! — возразил Король.

— Почему же оно тогда 42-е? — спросила Алиса. — Оно должно быть первым!

Король побледнел и торопливо закрыл книжку.

— Обдумайте свое решение, — сказал он присяжным тихим, дрожащим голосом.

Льюис Кэролл, «Алиса в Стране Чудес»[63]

Что такое научный закон? Кто творит его и кто ему подчиняется? Кем он используется — великим мыслителем или инженером, занятым практической работой? Эта глава посвящена специальному вопросу, связанному с вашими занятиями с пружинами. Речь идет о пропорциональном удлинении, которое мы рассмотрим как пример научного закона; мы покажем, как им пользуются инженеры.

Открытие Гука

В 1676 г. Роберт Гук объявил о своем открытии. Это был простой закон, точно выполнявшийся в широком диапазоне; ему была предназначена важная роль в физике и технике. Гук был в восторге от своего открытия, но своим коллегам он не очень доверял и поэтому был озабочен, как бы кто-нибудь не приписал это открытие себе.

В те времена публикация открытий в периодических научных журналах еще только приходила на смену монографиям и частным письмам, поэтому все еще было опасно с кем-нибудь поделиться своим открытием. Сразу же кто-то мог сказать: «О, мы открыли это давным-давно!» И Гук придал своему закону о растяжении пружин вид анаграммы:

ceiiinosssttuv.

Это было своеобразное патентование открытия. Он выждал два года, чтобы конкуренты могли сделать заявки о своих открытиях, связанных с пружинами, а затем дал расшифровку своей головоломки: «ut tensio, sic vis», ила «каково удлинение, такова и сила»[64].

Фиг. 99. Результаты испытания пружин.

Гук открыл, что при растяжении пружины возрастающей силой удлинение изменяется прямо пропорционально этой силе.

Как вам известно из практики, это простое соотношение выдерживается для стальных пружин с замечательной точностью в широком диапазоне удлинений. Оно справедливо также для пружин, сделанных из других материалов, возможно, лучше всего для спиралей из кварца (чистый плавленый песок). Все это не было бы ни странно, ни полезно, если бы свойство пропорциональности сохранялось только в узком диапазоне малых удлинений. Ведь почти любую кривую на коротких отрезках можно рассматривать с некоторым приближением как прямую линию. Но это соотношение справедливо и в случае, когда удлинение пружины в несколько раз превосходит ее первоначальную длину. Оно позволяет многим из нас, подобно Гуку, вкусить трепет успеха, связанный с открытием столь ясного и простого свойства природы.

С поведением материалов по закону Гука мы встречаемся во многих случаях растяжения, сжатия, скручивания, изгиба, упругой деформации любых видов. Вот несколько примеров:

а) растягивание проволоки:

УДЛИНЕНИЕ ~ РАСТЯГИВАЮЩАЯ СИЛА;

б) растяжение или сжатие стержня:

Δ ДЛИНЫ ~ СИЛА;

в) кручение стержня:

УГОЛ КРУЧЕНИЯ ~ ЗАКРУЧИВАЮЩАЯ СИЛА;

г) изгиб балки:

ПРОГИБ БАЛКИ ~ НАГРУЗКА;

д) сжатие твердого тела или жидкости:

ИЗМЕНЕНИЕ ОБЪЕМА ~ ПРИЛОЖЕННОЕ ДАВЛЕНИЕ;

вообще:

ДЕФОРМАЦИЯ ~ ДЕФОРМИРУЮЩАЯ СИЛА.

Фиг. 100.

Это общее правило называется «законом Гука» в честь сделанного Гуком открытия. На фиг. 101–103 показаны приспособления для изучения приложений закона Гука.

Фиг. 101. Растяжение проволоки.

Фиг. 102. Кручение металлического стержня.

Левый конец образца зажат, а правый конец соединен с большим диском, который свободно вращается; грузы подвешены на ленте, обернутой вокруг диска. Стрелка указывает величину угла кручения.

Фиг. 103. Прогиб деревянной балки.

а балка закреплена одним концом; вблизи второго нагруженного конца измеряется вертикальное отклонение; б — балка оперта вблизи ее концов и нагружена в середине.

Научные законы

Когда мы говорим, что проволока «подчиняется» закону Гука при небольших нагрузках, мы вовсе не хотим сказать, что Гук или его закон заставляют проволоку вести себя подобным образом. Мы просто подразумеваем, что она именно так ведет себя, — так показал эксперимент. И это пример того поведения, которое описывает в общем виде закон Гука. Слово «закон» дезориентирует. Оно используется в науке для характеристики зависимости или поведения (например, материала или вещества), которое установлено и имеет, по-видимому, весьма общий характер, а также представляется нам простым и важным.

Большинство научных законов найдено на основе эксперимента индуктивным путем, как и закон Гука. Некоторые были выведены методом дедукции из тех или иных теоретических схем: в химии закон кратных отношений развит на основе атомистической теории, закон равномерного распределения энергии между частицами выведен из статистической механики (и оказался частично неприменимым). Иногда утверждению присваивается другое название — «принцип», или «правило», или даже (достойный термин) «соотношение». Например: принцип сохранения энергии, квантовые правила отбора, соотношение масса-энергия Е = 2. Закон, принцип, правило[65] — теперь вы можете рассматривать эти понятия как очень схожие между собой; все они суммируют то, что мы обнаружили или что по нашему мнению может происходить в природе. Поэтому выражение «… подчиняется… закону» надо считать неудачным. Научные законы не командуют природой подобно полисмену. Их нельзя использовать для «объяснения» того, что подсказало нам мысль о существовании этих законов, но они могут пролить свет на другие эксперименты. Законы сами возникли из экспериментов, и вряд ли их можно считать ниспосланными свыше причинами явлений, выявленных самими экспериментами. Скорее законы — это простые правила, которые мы извлекаем из изучаемого нами запутанного клубка, основные нити экспериментальных сведений, которые вырабатываются в науке. Наука ничего не могла бы достичь, если бы знание было просто клубком запутанных фактов или случайных наблюдений.

Мы считаем, что существуют простые законы, которые мы ищем, и что каждый из них должен давать правильное описание природы, в которой их и обнаруживают. Но философия науки предостерегает нас от излишней доверчивости. Она напоминает нам, что в законах много искусственного. Природа, сведенная в систему законов, есть отражение наших представлений о природе.

Созданные человеком законы содержат допущения, отражающие наши надежды. Даже при выводе закона Гука мы считали, что для нахождения полной нагрузки можно складывать веса грузов, которыми мы нагружаем пружину. У нас нет способа доказать, что нагрузка, равная 200, плюс нагрузка, равная 300, составляют нагрузку, равную 500. Мы просто допускаем это в качестве определения «общей нагрузки». Таким образом, некоторые упрощения созданы нами самими; мы не втискиваем природу в простую форму, а стараемся упростить ее описание. Это несколько циничное заявление, вероятно, вас шокирует, но следует признать, что вы не одиноки. То же испытывают многие физики.

Иной взгляд на законы

Не происходит ли так, что однажды найденные научные законы существуют непрочно из-за постоянного ожидания открытия новых исключений из них или ограничений? Некоторые современные философы оспаривают подобную недооценку законов и приписывают им гораздо большее постоянство. Они считают, что закон представляет собой ясное выражение элементарных фактов, причем вопрос об ошибочности или неверности закона вообще не ставится.

Этот закон утверждает именно то, о чем идет речь, позволяя регламентировать нашу информацию. Роль науки, говорят эти философы, — в знании, которое выражается законом с соответствующими ограничениями.

Говоря о законе Гука «удлинение изменяется пропорционально нагрузке», мы не должны спрашивать: «Верно ли это утверждение?».

Скорее следует поставить такие вопросы: насколько факты соответствуют этому утверждению? Многие ли вещества в различных формах подчиняются ему? Приложимо ли оно к малому или большому диапазону удлинений? Если большая часть пружин и кусков проволоки подчиняется данному утверждению в пределах большого диапазона растяжений, то мы рассматриваем это как полезный факт, заслуживающий наименования закона. Мы можем нарисовать себе картину безграничной области применимости этого закона — от бесконечных удлинений до предельных сжатий, однако мы не строим иллюзий насчет того, что реальные материалы смогут подчиняться ему в таком диапазоне. Зато мы гордимся тем (а это почерпнуто, конечно, из опыта), что знаем пределы его применимости. Мы полагаем, что знаем, какой диапазон удлинений справедлив, скажем, для стальной проволоки и насколько близко в этом диапазоне экспериментальные замеры соответствуют закону.

Кроме того, мы исследуем вещества типа стекла или глины и подозреваем в этом случае наличие серьезных отклонений.

С этой точки зрения закон скорее похож на железнодорожное расписание. Расписание говорит не больше того, о чем в нем говорится; вопрос о его нарушении (не считая нелепых опечаток) не ставится. Но насколько точно курсируют поезда по этому расписанию, — уже совершенно другой, важный для пассажиров вопрос, на который может ответить только опытный специалист-железнодорожник. Заметьте, что этот взгляд на научный закон не так уж отличается, как кажется сначала, от первой точки зрения, согласно которой закон суммирует данные эксперимента. Мы просто вносим данные экспериментальных испытаний и знание ограничений черную записную книжку» с детальными знаниями. Это и делает его специалистом.

Основы знания, которые мы называем наукой, остаются в большей своей части постоянными, как бы вы ни смотрели на законы, но размышления об этих взглядах могут помочь вам увидеть, как подлинная природа, которая поистине очень сложна, может быть интерпретирована на основе простых законов.

Мы считаем, что существуют простые законы, которые должны быть найдены независимо от того, какую из двух описанных выше точек зрения мы предпочли. Вывод законов есть одна из форм научной деятельности в физике, но есть еще и мышление, обогащенное фантазией, а над всем этим искусство связывать законы воедино, которое вдохновляется надеждой найти общее объяснение или высказать новые предположения. В дальнейшем мы вернемся к обсуждению законов, концепций и теорий, а пока, изучая этот курс, вы должны изучать законы, принимая каждый из них с доверием, но критически, и заглядывать вперед, чтобы самим следить за тем, как развивается наука, когда законы связываются между собой[66].

Удлинение за пределами справедливости закона Гука

В устройстве, показанном на фиг. 101, удлинение медной проволоки А длиной в несколько метров измеряется стрелкой, которая скользит по шкале, прикрепленной к другой проволоке В, подвешенной к той же поверхности. До некоторой нагрузки (равной нескольким килограммам для медной проволоки диаметром 1 мм) проволока «подчиняется» закону Гука, удлиняясь на несколько миллиметров. Когда же нагрузка увеличивается еще больше, удлинение растет быстрее, чем следовало бы по закону Гука, затем резко возрастает и становится видимым. Наконец, растянувшись на сотни миллиметров, примерно до 40 % своей длины, проволока разрывается. Попытайтесь воспроизвести этот опыт с хорошо закрепленным отрезком медной проволоки. Внимательно осмотрите концы проволоки в месте разрыва.

Физиков интересуют эти изменения, они стараются истолковать их в терминах деформации кристаллов металла. При этом встречаются неожиданности: неправильности, вносимые спеканием множества малых кристаллов» делают проволоку значительно более прочной, нежели в случае монокристалла, слои атомов которого легко скользят один по другому. Межатомные силы, связывающие кристаллы, еще исследуются. Мы знаем, что эти силы быстро изменяются в зависимости от расстояния. Поэтому неожиданной является их способность привести к столь простому явлению, как закон Гука, даже при самых малых удлинениях.

Инженеры и упругость

Закон Гука открывает перед инженером возможность предварительно определять упругие изменения, возникающие при нагрузке в конструкциях. Он может вычислить прогиб моста, прежде чем мост построен, или определить закручивающую силу на валу гребного винта, измеряя малые деформации при закручивании. Для подобных целей он должен лишь точно знать поведение измеряемого образца материала; на основе этих данных инженер проектирует полномерную конструкцию. Его интересуют также свойства материалов за пределами применимости закона Гука, например при разрушающей нагрузке; эти данные он находит также по измерениям на образцах. Как экспериментаторы, составляющие справочные таблицы для инженеров, избавляются от ненужных подробностей? Как они приводят свои измерения к величинам, относящимся к самим материалам, а не к данному образцу?

Описания специальных задач теории упругости и поставленные в них вопросы покажут вам некоторые методы обработки данных, которыми пользуются инженеры, а работа над ответами на вопросы даст вам возможность продумать до конца «правила игры».

Некоторые вопросы представляют собой «упражнения», основанные на здравом смысле. Другие просто иллюстрируют полезные термины, введенные инженерами.

ЗАДАЧИ ПО ТЕОРИИ УПРУГОСТИ

Введение

Как и пружины, проволока или стержни из твердого материала (подобно стали), будучи нагруженными, удлиняются. До определенного предела удлинение прямо пропорционально нагрузке. Это пример общего правила, названного законом Гука в честь совершенного им открытия. Пределу, за которым это простое отношение нарушается, присвоено название предел пропорциональности (предел действия закона Гука).

Предел упругости — состояние, после которого образец непрерывно изменяется. Некоторые вещества при нагрузке, превышающей предел упругости, внезапно обнаруживают большую текучесть. Эта точка называется пределом текучести.

При еще большей нагрузке образец разрушается. Эта точка, называемая пределом прочности, расположена вблизи предела текучести (если такое же имеется).

Как инженерам, так и физикам чрезвычайно важно знать предел прочности, предел текучести, предел упругости, предел пропорциональности и зависимость между нагрузкой и деформацией в области действия закона Гука. Здравый смысл вам подскажет, как предсказать некоторые из этих параметров для проволоки и стержней одного размера, если вы располагаете экспериментальными данными по нескольким другим размерам. Задачи, приведенные ниже, указывают, как это сделать. (Для обозначения «изменяется прямо пропорционально» или «пропорционально» пользуйтесь символом ~.)

Разрушающие силы

Задача 1

Предположим, что разрушающая сила для данной проволоки равна 45,4 кГ. Разрушающая сила для пучка из четырех таких проволок, связанных вместе, будет равна ___ кГ. Если все четыре проволоки сплавить вместе в одну толстую проволоку (не изменяя длины), то следует ожидать, что эта толстая проволока также будет разрушена силой ___ кГ.

Площадь поперечного сечения толстой проволоки в ___ раз больше соответствующей площади одинарной исходной проволоки.

Это рассуждение, сделанное на основе здравого смысла, позволяет предположить, что отношение между разрушающей силой FВ и площадью поперечного сечения А проволоки или стержня, по-видимому, должно быть

________ (напишите алгебраическое выражение, используя знак ~)

Задача 2

а) Имеются стержни квадратного сечения: небольшой, размером 25,4х25,4 мм2, и крупный, размером 50,8х50,8 мм2. Разрушающая сила для крупного стержня должна быть в раз больше. Вообще отношение между разрушающей силой FВ и шириной w квадратного стержня должно быть

________ (напишите алгебраическое выражение, используя знак ~)

б) Имеются стержни или проволока круглого сечения. (Вспомните: площадь круга равна πr2, или πd2/4, где d — диаметр круга.)

Если мы увеличим диаметр круга в 2 раза, то удваивается и радиус, а площадь круга увеличивается в ___ раз.

Если мы увеличим диаметр круга в 10 раз, то его площадь увеличится в ___ раз.

Вообще соотношение между диаметром d и площадью А для круга равно ___. Отсюда соотношение между разрушающей силой FВ и диаметром d для стержней и проволоки должно быть

________ (напишите алгебраическое выражение, используя знак ~)

Задача 3

Поработайте над интересным приложением описанной методики к вопросу о размерах слонов. Мамонты, вымерли, быть может, потому, что были слишком тяжелы для своих собственных ног. Животное такой же формы, но построенное по удвоенной шкале так, что по сравнению с мамонтом его высота, длина и ширина вдвое больше, имеет объем больше в ___ раз, поэтому оно весит в ___ раз больше, если состоит тоже из мяса и костей. Однако ноги этого нового животного вдвое большего диаметра только в ___ раз сильнее. Таким образом, имеется предел для безопасных размеров животного. Должно ли это ограничение относиться и к китам? ___ Почему? ___

Задача 4

Допустим, что проволока в 2 раза длиннее испытываемого образца и к ней подвешен точно такой же разрушающий груз. Сила передается вдоль всей удвоенной длины, и разрушение произойдет, по-видимому, так, как и прежде. (Мы, конечно, понимаем, что разрушающая сила не увеличится вдвое, как не следует ожидать и того, что длинная проволока будет разрушена вдвое меньшей силой. Если, как это часто случается, разрыв произойдет в каком-то ослабленном месте, то на длинной проволоке более вероятно найти слабое место. В последнем случае более длинная проволока может легче разрушиться, но, отвечая на поставленный ниже вопрос, вы, не должны принимать во внимание этот довод.)

Каково отношение между длиной проволоки l и разрушающей силой F?

Напряжение

Задача 5

Просмотрев ответы на заданные вопросы, вы увидите, что, когда мы имеем дело с проволокой и стержнями разных размеров, но из одного материала, вопрос о том, разорвется ли проволока, определяется не только величиной приложенной силы (нагрузки), но и площадью поперечного сечения проволоки.

Для проволоки различных размеров разрушающая сила различна; но отношение (или дробь) (разрушающая сила)/(площадь поперечного сечения) должно быть одинаковым для всех образцов. Основываясь на ваших предыдущих ответах, согласны ли вы с этим? ___ Поэтому приведенное отношение открывает путь для определения той величины нагрузки, которую должен испытать материал, чтобы он разрушился (это относится больше к данному виду материала, чем к отдельному стержню). Отношение (разрушающая сила)/(площадь поперечного сечения) называется пределом прочности.

Пользуясь понятием напряжения, мы можем принимать решения, независимые от формы и размеров образца. Так, зная предел прочности материала, мы можем вычислить разрушающую силу для какого-либо отдельного стержня или отрезка проволоки.

Задача 6

Напряжение, вычисленное как отношение (сила)/(площадь), может служить главным мерилом качества обработки, которой подвергся материал. Нагрузки, соответствующие пределу пропорциональности, пределу упругости, пределу текучести, в большой степени следуют тем же отношениям, что и разрушающая нагрузка, хотя и различны по величине. Таким образом, существуют напряжения, соответствующие пределу текучести, пределу пропорциональности и т. д.

Если все нагрузки измеряются в кГ, а все диаметры в мм, то каждое из этих напряжений должно измеряться в ___ (единицы).

Если силы измерять в ньютонах, диаметры — в метрах, то все напряжения будут в ___ (единицы).

Эти единицы служат, кроме того, еще для измерения _? _.

Область применения закона Гука

Задача 7

Для удлинений по закону Гука мы можем опять представить себе связку проволок, скрученных в одну толстую проволоку. Исходя из этого, мы обосновываем способ определения силы, необходимой для того, чтобы произвести определенное удлинение, отнесенное к диаметру проволоки.

Чтобы связка из четырех проволок получила такое же удлинение, требуется сила, большая в ___ раз.

Площадь поперечного сечения такой связки, сплавленной в одну проволоку, будет в ___ раз больше.

Отсюда отношение между силой F, потребной для определенного удлинения, и площадью поперечного сечения А должно быть равно _? _ _? _.

Для проволоки круглого сечения отношение между силой F (для определенного удлинения) и диаметром d должно быть равно _? _ ~ _? _.

Задача 8

Отношение (растягивающая сила)/(площадь поперечного сечения) действительно определяет удлинение для данного материала. Мы называем это отношение напряжением. Тогда, если одинаковое напряжение приложено к проволокам разных диаметров, но одной и той же длины и сделанным из одинакового материала, удлинение для всех этих проволок должно быть одинаковым.

Объясните кратко, почему: ___

Задача 9

В пределах области действия закона Гука удвоение длины проволоки дает как бы две проволоки, каждая из которых будет растягиваться с первоначальным удлинением. Таким образом, общее удлинение при той же нагрузке будет в ___ раз больше.

Вообще отношение между удлинением Δl и длиной l проволоки для нескольких разных проволок из того же материала, несущих одинаковую нагрузку, будет ___.

Деформация

Задача 10

Рассматривая поведение проволоки различной длины, мы видим, что отношение (удлинение)/(длина) должно быть одинаковым для всех проволок из одного и того же материала при том же напряжении, хотя длина проволок различна. Считаете ли вы это утверждение рискованным? приемлемым? по-видимому, правильным? правильным? ___

Это отношение называется деформацией. Пользуясь им, мы можем отвлечься от длины образца и установить характеристику самого материала. Если мы измеряем удлинение и длину в миллиметрах то деформация должна измеряться в ___ (единицы).

Модуль

Задача 11

Инженерам и физикам часто бывает необходимо знать упругие свойства материала в определенном виде, пригодном для разнообразных форм и размеров образцов и разнообразных прилагаемых сил. С этой целью мы используем:

напряжение, которое представляет собой отношение

СИЛА/ПЛОЩАДЬ (к которой она приложена)

вместо собственно силы (нагрузки);

деформацию, представляющую собой отношение

ИЗМЕНЕНИЕ ДЛИНЫ (или соответствующего размера)/ПЕРВОНАЧАЛЬНАЯ ДЛИНА (или соответствующий размер)

вместо собственно изменения длины.

Тогда в пределах действия закона Гука, где простейшим утверждением является

УДЛИНЕНИЕ ~ НАГРУЗКА [или (НАГРУЗКА)/(УДЛИНЕНИЕ) = соnst],

мы получаем более обобщенное отношение, которое, подобно отношению (нагрузка)/(удлинение), постоянно. Но это обобщенное отношение не зависит ни от формы, ни от размера используемого образца. Оно одинаково для всех образцов данного материала. Чтобы вывести обобщеннов отношение, мы используем напряжение и деформацию вместо нагрузки и удлинения. Теперь мы можем представить закон Гуна в общей, итоговой форме:

?/? = const

Эта постоянная называется модулем. Чем легче вещество растягивается (или сжимается), тем

___________ должен быть его модуль.

(больше?/меньше?) 

Используя напряжение и деформацию, можно представить закон Гука в общей форме: (напряжение)/(деформация) = const; это значит, что отношение

постоянно.

Такое отношение (напряжение)/(деформация) мы называем модулем.

В пределах справедливости закона Гука модуль является характеристикой материала, различной для различных видов деформации, но не зависящей ни от формы, ни от размеров образца и приложенной силы. Чем больше сила, необходимая для придания материалу заданной деформации, тем больше модуль. Следовательно, величина модуля характеризует жесткость материала, а не легкость его растяжения и т. п.

Для чистого растяжения стержня или проволоки с помощью растягивающей силы (мы об этом говорили) модуль, определяемый отношением (напряжение)/(деформация), называется модулем Юнга (модуль продольной упругости). Он относится также и к сжатию (фиг. 104,а). Инженеры пользуются им, чтобы заранее определять возможные изменения мостовых балок при их растяжении или сжатии.

При изгибе упругой балки одни волокна растягиваются, другие сжимаются (фиг. 104,б), поэтому модуль Юнга применяется и при изгибе. Пометьте резиновую трубку или резиновый брусок чернилами и постарайтесь растянуть или изогнуть их.

Фиг. 104. Растяжение (сжатие) стержня или проволоки (а) и изгиб балки (б).

Сильнее сжимаются и растягиваются внешние волокна, поэтому в них возникают большие давления и напряжения, препятствующие изгибу. Внутренние волокна претерпевают малые деформации, и, следовательно, в них возникают малые силы. Их можно удалить с небольшой потерей прочности, но с весьма существенной экономией в весе. Именно поэтому сплошные балки заменяются двутавровыми (I-образными, фиг. 105), а в велосипедных рамах ставят не сплошные, а пустотелые детали трубчатой формы.

Фиг. 105. Изогнутая балка.

а — балка разрезана на части А и В; б — волокна части В создают силы, приложенные к части А; в — двутавровая балка может быть намного легче, но обладает той же прочностью при изгибе. 

Для других видов деформации существуют другие модули.

Для чистого изменения размера без изменения формы (т. е. чистого сжатия, фиг. 106) применяется объемный модуль.

Фиг. 106. Чистое изменение размеров.

Сжимающее напряжение легко осуществляется с помощью давления жидкости.

Для чистого изменения формы без изменения размеров (сдвиг) существует модуль сдвига. При кручении стержня происходит сдвиг, поэтому здесь применяется модуль сдвига. Попробуйте скрутить резиновый брусок или трубку, помеченные чернилами.

Положите толстую книгу на стол и толкайте переплет так, чтобы страницы скользили одна по другой. Начерченный карандашом на обрезе книги прямоугольник деформируется и приобретает форму ромба (фиг. 107 и 108).

Фиг. 107. Сдвиг.

При сдвиге квадратные стороны кубического блока принимают форму ромба. 

Фиг. 108. Другой пример деформации сдвига.

Наклонные волокна блока растягиваются и сжимаются так, что его стороны из ромбов с острыми углами 45° становятся прямоугольниками. Попытайтесь проделать это с блоком большой книги.

В книге происходит сдвиг; ее форма изменяется, но объем остается прежним. Вы можете вообразить, что каждый слой атомов или молекул (каждая страница книги) принужден скользить поверх следующего слоя, испытывая возрастающую сдерживающую силу. Когда стержень закручивается, волокна, первоначально параллельные оси стержня, отклоняются от нее и оказываются сдвинутыми (фиг. 109).

Фиг. 109. Закручивание цилиндра.

Волокно сдвигается и занимает наклонное положение, а квадраты, начерченные на поверхности цилиндра, иллюстрируют деформацию сдвигом. А — закрученный конец.

Внутренние слои скрученного стержня претерпевают относительно малые деформации, создают малые противодействующие напряжения и, следовательно, мало участвуют в сопротивлении стержня скручиванию. Трубка почти так же прочна, как сплошной стержень, но намного легче.

Деформации в различных материалах

Жидкости и газы не оказывают постоянного сопротивления изменению формы, и, таким образом, модуль сдвига к ним неприменим. Но при изменении объема они проявляют упругие свойства, которые характеризуются объемным модулем сжатия. Жидкости подчиняются закону Гука, объем их изменяется в пределах большого диапазона давлений; газы легко отклоняются от закона Гука, и для них должен быть найден другой закон. Для твердых тел простые изменения сдвига и сжатия могут комбинироваться с более сложными видами деформаций, например в спиральных пружинах или в подъемно-транспортных машинах, и во всех случаях обычного поведения материалов по закону Гука отношение

НАПРЯЖЕНИЕ (соответствующее приложенным силам)/ДЕФОРМАЦИЯ (искажение)

выдерживается в широком диапазоне постоянным для данного материала; иначе говоря, (напряжение)~(деформация),

Закон Гука

Общая форма закона Гука

НАПРЯЖЕНИЕ/ДЕФОРМАЦИЯ = const

приложима ко всем материалам (в известных пределах) и ко многим видам деформации. Закон замечателен и полезен не только потому, что прост, но и вследствие широкого диапазона применения. Спиральная стальная пружина с плотно прилегающими витками может растягиваться до длины, в 5 или 10 раз превышающей первоначальную, прежде чем достигнет своего предела пропорциональности.

Можно изогнуть деревянную балку или навить «волосок» (спиральную пружину) под большим углом все еще по закону Гука. Даже обыкновенная металлическая проволока, подвергнутая растяжению, удовлетворяет закону Гука в пределах удивительного диапазона удлинений, оставляя далеко позади ничтожно малое удлинение, вызванное нагреванием. Можно представить себе, что ее атомы, нагруженные по отдельности тянущей силой, направленной против электрического притяжения, испытывают влияние индивидуальных сил, действующих по закону Гука.

Если построить кривую, представляющую величину у, деформацию, в зависимости от величины х, представляющей напряжение, закон Гука будет выражен прямой линией, проходящей через начало координат. Эта линия выражает зависимость у = . Точная формулировка для реальных материалов может быть гораздо более сложной математической зависимостью, но во многих случаях, когда у = (сложная функция х), мы можем выразить ее в виде ряда

у = А + Вх + Cx2 + Dx3 +…,

где А, В, С…. — постоянные величины. В этом случае у = 0, когда х = 0 (если не приложено напряжение, то нет и деформации). Следовательно, А должно быть равно нулю. Из эксперимента известно, что закону Гука хорошо соответствует предположение, по которому С, D…. весьма малы. Тогда по закону Гука у ~= Вх. Однако, когда х возрастает, значения x2, x3 и т. д. возрастают даже больше (поскольку при удвоении х значение x2 становится в 4 раза больше, x3 — в 8 раз больше и т. д.). Следовательно, если С, D…. не равны точно нулю, мы должны ожидать, что их предельные значения становятся ощутимыми при больших напряжениях. Широкий диапазон применения закона Гука говорит нам, что эти константы удивительно малы. Все же они существуют, поэтому мы должны рассматривать наш великий и простой закон Гука только как гипотезу, очень близкую к природе. Открыли мы эту простую зависимость или измыслили ее?