ВЗРЫВ ПЕРВИЧНОГО АТОМА

Леметр предложил в качестве зародыша Вселенной объект конечных размеров, сверхмассивный первичный атом. Его взрыв порождает опять-таки сверхтяжелые и потому нестабильные осколки, фрагменты которых тоже должны делиться. Если принять во внимание количество частиц, которое, по современным оценкам, содержит Вселенная, то получится, что атом-отец и его потомки во множестве поколений должны претерпеть несколько сотен делений и на этом остановиться.

Однако такая схема даже семьдесят лет назад не могла вызвать доверия. В процессе множественных делений в конце концов должны были возникать максимально устойчивые атомы. А поскольку наиболее стабильными являются ядра атомов железа, то в космических масштабах именно оно должно было оказаться самым распространенным элементом. Однако в тридцатые годы прошлого века астрономы уже достоверно знали, что Вселенная почти полностью состоит из водорода и гелия. Несомненным достоинством модели Леметра было то, что она предсказала и объяснила закон Хаббла. Но данные об элементном составе Вселенной не согласовывались с теорией первичного атома. В масштабе Макромира концепция бельгийского ученого работала превосходно, а на микроуровне заводила в тупик.

Следующий этап исследования Большого взрыва связан с именем замечательного русского ученого Георгия Антоновича Гамова. Гамов познакомился с моделью нестационарной Вселенной еще на студенческой скамье, когда учился у Фридмана. По окончании Ленинградского университета он посвятил себя ядерной физике и выполнил несколько классических работ, в частности построил теорию альфа-распада и предложил капельную модель ядра. Впоследствии он эмигрировал и в своих исследованиях полностью переключился на астрофизику. Основываясь на работах Леметра, Гамов начал поиск решения проблемы возникновения в Большом взрыве окружающих нас химических элементов.

Поскольку расширение Вселенной приводит к ее постепенному охлаждению, сжатие должно вызывать обратный эффект. Поэтому, исследуя модель Леметра назад во времени почти до исходного момента, Гамов заключил, что сразу после рождения мира все имевшееся вещество было чрезвычайно нагрето. Это был огромный шаг вперед по сравнению с леметровским атомом, для которого понятие температуры вообще не имело смысла. Однако следовало еще определиться с составом первичной материи.

Гамов предположил, что ранняя Вселенная была заполнена элементарными частицами, включая протоны, нейтроны и электроны. Эту смесь он назвал айлемом, применив термин из средневекового английского языка, означавший нечто вроде первосубстанции, источника всего сущего. И на этот раз интуиция не подвела замечательного физика, ведь, по современным представлениям, к концу первой секунды Большого взрыва все известное нам вещество Вселенной полностью состояло из айлема.

Спустя некоторое время астрофизики, анализируя построения Гамова, пришли к выводу, что Вселенная должна быть заполнена микроволновым излучением, возникшим примерно через триста тысяч лет после ее начала. Это было предсказанием принципиально нового явления, еще неизвестного науке. Регистрация микроволнового излучения, осуществленная в шестидесятых годах прошлого века, оказалась сильным аргументом в пользу теории горячего рождения Вселенной.

Еще совсем недавно у физиков существовало своеобразное «табу» на исследование пространства и времени за границей рождения Вселенной. Сейчас уже возникло довольно много теорий, описывающих, как могло выглядеть то очень таинственное нечто, в чем и возник наш мир. Во-первых, это, конечно же, должно быть не обычное состояние иного пространства-времени. Ведь в нашей повседневной реальности вокруг нас не рождаются новые Вселенные! И даже если бы это происходило, то мы просто бы перенесли вопросы рождения Мироздания в эту старую Вселенную, а потом в еще более старую и так далее. В математике такой процесс хождения по кругу одних и тех же понятий носит название «дурная бесконечность», и он по определению не способен дать чего-либо нового познанию. Поэтому физики и рассматривают среду, где возник наш мир, как суперпространство со многими измерениями.

Тут возникает очень любопытная логическая головоломка. Ведь если геометрического центра Большого взрыва не существует, и он происходил, а по некоторым теориям и происходит, «повсюду», то где-то вокруг нас и спрятано суперпространство. Первые подозрения, как всегда в подобных случаях, вызывают так называемые сугубо квантовые объекты. Если представить наше Мироздание состоящим из этажей-масштабов, то обитать эти удивительные частицы будут на дне подвала, где-то вблизи самого фундамента мира. Этот этаж мы назовем сверхмикроскопической основой Вселенной. Там в кажущейся пустоте вакуума непрерывно бушуют штормы физических полей, периодически заставляя его выплескивать энергию — флуктуировать на более высокие масштабные этажи материи. При этом в сверхпространстве возникает вереница возмущений, чем-то напоминающих пузырьки в пенящейся жидкости. Внутри каждого такого пузырька существует особенный мир и течет собственное время, стрелка которого летит краткий миг от рождения до «схлопывания». Подавляющая доля таких миров-пузырьков имеет невообразимо малый период существования, но при этом они успевают проявить себя как полноценные замкнутые мини-вселенные.

Взрыв первичного атома Леметра

Теория Леметра обосновывала оригинальную концепцию возникновения Вселенной из особого начального состояния с очень высокой плотностью материи. В духе физических знаний своего времени он интерпретировал этот момент как распад некого первичного атома, который существовал вне времени и пространства. Леметр вычислил последующую эволюцию «взорвавшейся» Вселенной на основе уравнений общей теории относительности и теоретически вывел линейную зависимость между радиальной скоростью галактик и их удаленностью от Солнечной системы.

Компьютерная модель эволюции Мироздания (сверху вниз)

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК