НА ПУТИ К «ТЕОРИИ ВСЕГО»

Кварковая микрофизика носит название квантовая хромодинамика, поскольку связана с динамикой цветовых (хромо-) зарядов кварков. Она дает ученым эффективный способ описания сильных внутриядерных взаимодействий и прекрасно согласуется с экспериментальными данными, считаясь универсальной основой для фундаментальных объяснений микромира. Теория струн на фоне квантовой хромодинамики выглядит достаточно экзотично, не очень-то логически стройно и, самое главное, не имеет существенных экспериментальных подтверждений. Именно поэтому теорфизики долгое время не уделяли ей должного внимания. Затем мода на суперструнные построения вернулась, и их стали все чаще рассматривать как математический каркас для конструирования квантовой теории тяготения, как первый шаг в объединении всех фундаментальных взаимодействий в будущей «теории всего» (рис. 18 цв. вкл.).

На пути к этому, конечно же, возникнут многочисленные новые модели пространства и времени (впрочем, их и сейчас более чем достаточно!). Вполне возможно, что среди них будут и удачные модели, которые помогут разрешить важные загадки квантовой гравитации и космологии. Это грандиозная цель, и скорее всего для ее осуществления потребуется еще не одна научная революция, подобная той, что произошла в начале прошлого века. Уже сейчас «струнные» работы привели ко многим интересным результатам в математике, включая создание новых математических структур, а также инновационных идей и методов их решения. На последних конференциях, посвященных различным аспектам струнной теории, часто можно встретить физиков-теоретиков и математиков, совместно докладывающих свои исследования во многих областях математики, например в алгебраической геометрии.

Теория струн началась со сверхмалых — «планковских» — масштабов, лежащих за трудновообразимой гранью в 10-33 см, однако совершенно неожиданно появились умозрительные идеи, связанные со сверхбольшими пространственными измерениями. Так, в последние годы возникли идеи о том, что некоторые дополнительные измерения могут быть очень даже масштабными и даже стремиться в бесконечность. Конечно, мы не можем их воспринять по той простой причине, что сами заключены в трехмерном мире, который может входить как отдельная гиперповерхность во Вселенную с большим числом измерений.

Единственный для нас способ увидеть или почувствовать другие пространственные измерения — детектировать гравитационные флуктуации «подпространства». Это, конечно, дело экспериментов отдаленного будущего. Хотя и сейчас есть идеи, что новые опыты по рассеянию элементарных частиц на сверхмощных ускорителях, подобных Большому адронному коллайдеру, могут привести к открытию «свернутых пружинок» новых параметров нашего мира. Да и сверхбольшие дополнительные измерения по идее должны приводить к очень интересным эффектам (рис. 19 цв. вкл.).

Теория струн предлагает и оригинальные космологические сценарии эволюции нашего мира, согласно которым Вселенная на современном этапе развития может быть заполнена космическими струнами галактических или даже метагалактических масштабов. В основе лежит идея о том, что поскольку расширение нашей Вселенной началось с планковского масштаба Большого взрыва, то на этой стадии пространство-время было плотно заполнено «обычными» микроскопическими суперструнами с планковской длиной. Для того чтобы растянуть их до макроскопических размеров, потребовалась бы колоссальная энергия, и она нашлась естественным образом в ходе «разлета» нашего мира. Конечно, тут за скобками остается очень интересный вопрос о том, что предшествовало появлению суперструн в сверхмикроскопическом пузырьке — зародыше нашей Вселенной. Следующий вопрос состоит в характере непосредственного влияния микро-, мезо-, макро- и мегасуперструн на эволюцию Вселенной, а также изменения при этом их физических характеристик.

Гипотезу мегасуперструн можно привлечь и для объяснения одной из главных загадок нашего Мироздания — перехода равномерного расширения Вселенной в ускоренное около восьми миллиардов лет назад. Может быть, в те невообразимо далекие времена что-то поменялось в характере взаимодействия суперструн с таинственной темной материей и с не менее загадочной темной энергией? Ведь, если квантовые стринги существуют, они так или иначе должны входить в контакт с основным «темным» содержимым Метагалактики.

Схема гравитационного линзирования

Космические струны могут флуктуировать и колебаться, пересекаться и взаимодействовать между собой. Наблюдать их можно либо благодаря производимому ими эффекту гравитационных линз, отклоняющих световые лучи, идущие от далеких галактик, либо по всплескам гравитационного излучения в результате их продольных колебаний. По некоторым сценариям, гравитационное излучение космических струн можно будет открыть на новых сверхчувствительных детекторах гравитационных волн.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК