ЛУЧИ ИЗ КОСМОСА
Следующее неожиданное открытие пришло из высокогорных лабораторий, изучающих состав космических лучей, бомбардирующих нашу планету. Там вскоре начали открывать всевозможные частицы, не имеющие ни малейшего отношения к классической атомной триаде — электрону, протону и нейтрону. В частности, были обнаружены совершенно немыслимые по своей природе античастицы.
Мир античастиц — своего рода зеркальное отражение знакомого нам мира. Масса античастицы в точности равняется массе частицы, которой она вроде бы соответствует, но все ее остальные характеристики противоположны прообразу. Например, электрон несет отрицательный электрический заряд, а парная ему античастица — позитрон («позитивный электрон») — положительный. У протона заряд положительный, а у антипротона — отрицательный. И так далее. При встрече частицы и ее античастицы происходит мгновенный микровзрыв (физики называют это явление взаимной аннигиляцией), и обе частицы прекращают свое существование, а их масса преобразуется в энергию, которая рассеивается в пространстве в виде вспышки фотонов и прочих сверхлегких частиц.
Существование античастиц было впервые предсказано теоретически и открыто «на кончике пера» знаменитым впоследствии английским ученым Полем Дираком.
Чтобы понять, как ведут себя частицы и античастицы при взаимодействии по Дираку, представьте себе ровное поле. Если взять лопату и вырыть в нем ямку, в поле появятся два объекта — собственно ямка и кучка грунта рядом с ней. Теперь представим, что кучка грунта — это обычная частица, а ямка, или «отсутствие кучки грунта», — античастица. Засыпьте ямку ранее извлеченным из нее грунтом — и не останется ни ямки, ни кучки (аналог процесса аннигиляции). И снова перед вами ровное поле.
Пока шло теоретизирование вокруг античастиц, экспериментатор К. Андерсон придумал их детектор, получивший название конденсационной камеры. Андерсон смог зарегистрировать частицы, возникающие в результате столкновения космических лучей с мишенью, по следам (трекам) из капелек конденсата, которые можно было сфотографировать и по полученным фотографиям изучать траектории движения частиц. Точно так же ведет себя высотный реактивный самолет, оставляя после себя в атмосфере инверсионный след.
По интенсивности трека, оставленного частицей, можно судить о ее массе, а по характеру отклонения ее траектории в магнитном поле — определить электрический заряд частицы. Вскоре удалось зарегистрировать ряд столкновений, в результате которых образовывались частицы с массой, равной массе электрона, однако отклонялись они под воздействием магнитного поля в противоположную сторону по сравнению с электроном и, следовательно, имели положительный электрический заряд. Так была впервые экспериментально выявлена античастица — позитрон. Все следующие за позитроном античастицы были экспериментально обнаружены уже в лабораторных условиях — на ускорителях. Сегодня физики-экспериментаторы имеют возможность буквально штамповать их в нужных количествах для текущих экспериментов, и чем-то из ряда вон выходящим античастицы давно не считаются.
Сейчас ученым известно четыре вида сил, определяющих рождение и жизнь элементарных частиц. Сильное взаимодействие элементарных частиц вызывает процессы, протекающие с наибольшей сравнительной интенсивностью, и приводит к возникновению самой сильной связи среди элементарных частиц. Именно оно обусловливает связь протонов и нейтронов в ядрах атомов. Электромагнитное взаимодействие обеспечивает связь ядер и электронов в атомах и молекулах вещества и тем самым определяет устойчивость окружающих нас вещей. Слабое взаимодействие элементарных частиц вызывает очень медленно протекающие процессы с элементарными частицами, в том числе радиоактивные распады. Слабое взаимодействие гораздо слабее не только сильного, но и электромагнитного взаимодействия, но гораздо сильнее гравитационного. Гравитационное взаимодействие элементарных частиц является наиболее слабым из всех известных. Гравитационное взаимодействие на характерных для элементарных частиц расстояниях дает чрезвычайно малые эффекты из-за малости масс элементарных частиц.
На протяжении двух последних веков ученые, интересующиеся строением Вселенной, искали базовые строительные блоки, из которых состоит материя, — самые простые и неделимые составляющие материального мира. Атомная теория объяснила все многообразие химических веществ, постулировав существование ограниченного набора атомов так называемых химических элементов, объяснив природу всех остальных веществ через различные их сочетания. Таким образом, от сложности и многообразия на внешнем уровне ученым удалось перейти к простоте и упорядоченности на элементарном уровне.
Но простая картина атомного строения вещества вскоре столкнулась с серьезными проблемами. Прежде всего, по мере открытия все новых и новых химических элементов стали обнаруживаться странные закономерности в их поведении, которые, правда, удалось прояснить благодаря вводу в научный обиход периодической системы Менделеева. Однако представления о строении материи все равно сильно усложнились.
В начале прошлого столетия стало ясно, что атомы отнюдь не являются элементарными «кирпичиками» материи, а сами имеют сложную структуру и состоят из еще более элементарных частиц — нейтронов и протонов, образующих атомные ядра, и электронов, которые эти ядра окружают. И снова усложненность на одном уровне, казалось бы, сменила простота на следующем уровне детализации строения вещества. Однако и эта кажущаяся простота продержалась недолго, поскольку ученые стали открывать всё новые и новые элементарные частицы.
В обычной ньютоновской физике любая сила — это либо притяжение, либо отталкивание, изменяющие характер движения тела. Но в современных квантовых теориях сила, действующая между элементарными частицами, интерпретируется несколько иначе. Считается, что сила возникает в результате того, что две частицы обмениваются третьей.
Приведем следующую аналогию. Представьте себе пару фигуристов на катке, едущих друг другу навстречу. Приблизившись, один из них вдруг выплескивает на другого ведро воды. Тот, кто выплеснул воду, от этого затормозит и изменит направление движения. И тот, кто получил порцию воды, также затормозит и изменит направление. Таким образом, «обменявшись» водой, оба фигуриста изменили направление движения. Согласно законам механики, это означает, что между фигуристами произошло силовое взаимодействие. В приведенном примере нетрудно увидеть, что эта сила возникла из-за (или, как сказали бы физики, передалась «через» или «посредством») обмена водой.
Еще один пример касается двух лодочников, гребущих на встречных курсах. Один гребец перебрасывает массивный предмет партнеру, когда они проплывают друг мимо друга. В результате действия закона сохранения импульса, когда первый гребец сделал бросок, курс его лодки отклонился от прямолинейного в сторону, противоположную направлению броска, а когда второй гребец поймал предмет, его импульс передался ему, и вторая лодка также отклонилась от прямолинейного курса, но уже в сторону броска. Таким образом, в результате обмена предметом обе лодки изменили направление. Согласно механике Ньютона, это означает, что между лодками произошло силовое взаимодействие. Но ведь лодки не вступали между собой в прямое соприкосновение? Здесь мы и видим наглядно, и понимаем интуитивно, что сила взаимодействия между лодками была передана носителем импульса — переносчиком взаимодействия.
Оптимистичные ярлыки «универсальная теория», «теория всего сущего», «теория великого объединения», «окончательная теория» сегодня используются в отношении любой теории, пытающейся объединить все четыре взаимодействия, рассматривая их в качестве различных проявлений некоей единой и великой силы. Если бы это удалось, картина устройства мира упростилась бы до предела. Вся материя состояла бы лишь из кварков и лептонов, и между всеми этими частицами действовали бы силы единой природы. Уравнения, описывающие базовые взаимодействия между ними, были бы столь короткими и ясными, что уместились бы на почтовой открытке, объясняя при этом, по сути, основу всех без исключения процессов, наблюдаемых во Вселенной.
Здесь мы продолжим знакомить читателя с шедеврами научной популяризации из не столь уж и далекого прошлого и предлагаем небольшой отрывок из книги доктора химических наук Юрия Георгиевича Чиркова «Охота за кварками».

Кварки
Взаимодействие между кварками в составе элементарных частиц можно графически представить в виде диаграммы Фейнмана, названной так в честь американского физика Ричарда Фейнмана. На представленной диаграмме красный и синий кварки обмениваются глюоном и меняют свой цвет на цвет партнера по взаимодействию.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОК