Мартин ГАРДНЕР МОЖЕТ ЛИ ВРЕМЯ ИДТИ ВСПЯТЬ? (фрагмент)
Время описывалось многими метафорами, но нет более древней и более навязчивой, чем образ времени как реки. «Вы не можете войти дважды в одну и ту же реку, — говорил греческий философ Гераклит, — потому что всегда вокруг вас текут новые воды». «Вы не можете даже один раз войти в нее, — добавлял его ученик Кратил, — потому что, пока вы в нее входите, и вы и река уже успеваете в чем-то измениться».
У Джеймса Джойса в «Поминках по Финнегану» великим символом времени является река Лиффи, протекающая через Дублин. Ее «бесцельно блуждающие воды», достигающие океана в последних строках романа, затем возвращаются в «русло», чтобы опять начать бесконечный цикл изменения. Однако река — символ не только яркий, но и сбивающий с толку. Ведь течет не время, а мир. «В каких единицах надо измерять скорость потока времени? — спрашивает австралийский философ Дж. Смарт. — В секундах за …?» Говорить «время движется» — это то же самое, что сказать «длина протягивается».
Но вернемся к избитому сравнению. Если рыба может плыть по реке против течения, то мы бессильны проникнуть в прошлое. Изменяющийся мир, по-видимому, больше напоминает магический зеленый ковер, развертывающийся прямо под ногами и свертывающийся сразу же позади (этот образ также взят из литературы, из произведений американского фантаста Фрэнка Баума, в одном из которых королева страны Оз пересекает пустыню Смерти, двигаясь всегда в одном направлении по узкой ковровой дорожке «теперь»). Но почему магический ковер никогда не развертывается обратно? Каков физический базис этой странной непреодолимой асимметрии времени? По этому поводу среди физиков имеется так же мало согласия, как и среди философов. А ныне, в результате недавних экспериментов, замешательство еще более усилилось.
До 1964 года все фундаментальные законы физики, в том числе теория относительности и квантовая механика, были «времени-обратимыми». Другими словами, можно было заменить t на — t в любом основном законе, и он оставался так же применим к миру, как раньше: независимо от знака перед t закон описывал нечто, что могло происходить в природе.
Но физики все-таки стремились найти разницу между наконечником и оперением «стрелы времени». Они обратили свои взоры к таким событиям, а их немало, которые хотя и возможны теоретически, но в действительности никогда или почти никогда не происходят. Лучи звезды, например, распространяются во всех направлениях. Никогда не наблюдается обратное — они не приходят с разных сторон и не сходятся в звезду, нет обратно протекающих ядерных реакций, которые делали бы звезду поглотителем излучения, а не его источником. Однако в основных законах ведь нет ничего такого, что делало бы такую ситуацию невозможной в принципе! Непрерывное расширение всего космоса представляет еще один пример таких событий. Здесь опять нет причины, почему бы этот процесс в принципе не мог идти в обратную сторону. Если бы удаление галактик друг от друга сменилось их сближением, красное смещение превратилось бы в голубое смещение, и общая картина не нарушала бы никаких известных физических законов.
И хотя, как говорит наш опыт, эти процессы расширений и рассеяний всегда однонаправлены, но и они не помогают нам различать два конца стрелы времени.
Многие философы и даже некоторые физики считали, что объяснение стрелы времени можно найти только в человеческом сознании, в однонаправленной деятельности нашего ума. Однако их аргументы не были убедительны. Например, Земля претерпела долгую эволюцию, перед тем как на ней возникла какая-либо жизнь, и все доводы говорят за то, что события на Земле были раньше так же однонаправлены, как и теперь. В конце концов большинство физиков пришли к выводу, что все события природы в принципе времени-обратимы. Все, кроме тех, что связаны со статистическим поведением большого числа взаимодействующих объектов.
Пусть удар кия разрушит треугольник из восемнадцати шаров на бильярдном столе. Шары рассеются во все стороны, и, скажем, восемь из них попадут в лунки. Предположим, сразу после этого движение всех участвовавших в событии объектов стало бы совершаться в обратном направлении с теми же скоростями. Молекулы в лунках, куда попали шары, сконцентрировали бы свою полученную при падении шара тепловую энергию таким образом, чтобы в результате шары втолкнулись бы обратно на бильярдный стол. Попутно молекулы, переносящие теплоту трения, должны возвратить свою энергию шару и подтолкнуть его на прежний путь. Подобным же образом должны двигаться и другие шары. Восемь шаров, вытолкнутых из лунок, и шары, катающиеся на поверхности стола, будут перемещаться по столу до тех пор, пока они в конце концов не образуют треугольник. При этом не будет слышно никаких звуков соударений, потому что звуковая энергия молекул, участвовавших в возникновении колебаний воздуха во время первоначального разрушения треугольника, должна возвратиться к шарам и совместно с энергией их движения добиться того, чтобы шары сошлись в треугольник и к тому же оттолкнули кий в исходное положение. Картина движения любой индивидуальной молекулы, участвующей в этом событии, не представляла бы собой абсолютно ничего необычного. По-видимому, не был бы нарушен ни один фундаментальный закон механики. Но если рассматриваются миллиарды «бесцельно блуждающих» молекул, участвующих в общей картине, то вероятность, что все они будут двигаться по пути, требующемуся для воссоздания исходного треугольника, является слишком малой.
А как же быть со столкновением объектов, притягивающихся друг к другу, — например, с падением метеоритов? Несомненно, уж это-то событие не является времени-обратимым. Но и это не так! Когда большой метеорит сталкивается с Землей, происходит взрыв. Миллиарды молекул рассеиваются во все стороны. Обратите направления движения всех этих молекул, и их соударение в одной точке даст точно такое количество энергии, чтобы запустить метеорит обратно по орбите. И при этом ни один фундаментальный закон не был бы нарушен — кроме статистических законов!
Именно здесь, в законах вероятности, большинство физиков девятнадцатого века искали обоснование стрелы времени. Вероятность объясняет такие необратимые процессы, как растворение кофе, таяние мороженого, взрыв бомбы и все другие знакомые однонаправленные события, в которых участвует большое число молекул. Она объясняет второй закон термодинамики, согласно которому теплота всегда передается от более нагретого к более холодному телу, увеличивая энтропию — меру беспорядка системы. Этот закон объясняет, почему перетасовка делает беспорядочной колоду карт.
«Без какого-либо мистического призыва к сознанию, — констатировал Артур Эддингтон (в лекции, в которой он впервые ввел образ „стрелы времени“), — возможно найти направление времени… Произвольно направьте стрелу. Если, следуя за стрелой, мы найдем в состоянии мира все больше и больше беспорядка, значит, стрела указывает в будущее; если же, наоборот, беспорядок уменьшается, значит, стрела указывает в прошлое. Таково единственное различие между прошлым и будущим, известное физике».
Но к настоящему моменту выяснилось, что есть более фундаментальное, чем с помощью статистических законов, обоснование «стрелы времени». В 1964 году группа физиков Принстонского университета открыла, по-видимому, времени-необратимость некоторых слабых взаимодействий частиц. «По-видимому», — так как данные косвенные и спорные. Из них следует лишь, что если справедливы некоторые предпосылки, то симметрия времени нарушается.
Наиболее важная предпосылка известна как CPT-теорема. C — соответствует электрическому заряду (плюс или минус), P — четности (левое или правое зеркальное отображение) и T — времени (прямому иди обратному). Еще десять лет назад физики полагали, что каждая из этих трех основных симметрий справедлива во всей природе. Если вы замените заряды частиц камня на противоположные так, что положительные заряды станут отрицательными, а отрицательные положительными, камень все же останется камнем. Точнее говоря, камень превратится в камень из антиматерии, но нет никаких причин, почему антиматерия не может существовать. Антикамень на Земле мгновенно бы взорвался (материя и антиматерия аннигилируют друг с другом при соприкосновении), но физики могут вообразить галактику из антиматерии, в точности похожую на нашу собственную галактику — за исключением лишь знака C.
Считалось, что такая же универсальная симметрия справедлива относительно P (четности). Если вы измените на обратную четность камня или галактики — или, что то же самое, отразите в зеркале всю их структуру вплоть до последней волны и частицы, — в результате получится совершенно такой же камень или галактика. Но в 1957 году Ч. Янг и Т. Ли получили Нобелевскую премию по физике за теоретическую работу, которая привела к открытию несохранения четности. В мире элементарных частиц имеются события, в том числе некоторые слабые взаимодействия, которые не могут происходить, будучи отраженными в зеркале!
Не успели физики привыкнуть к этой новооткрытой симметрии, как принстонские экспериментаторы обнаружили несколько слабых взаимодействий, в которых и CP-симметрия, по-видимому, нарушалась. Другими словами, они нашли несколько событий, для объяснения которых пришлось допустить нарушение знака T — вдобавок к перемене знаков C и P. Хотя данные еще косвенные и частично спорные, многие физики теперь убеждены, что в мире элементарных частиц существуют события, идущие во времени только в одном направлении. Если это справедливо по всей Вселенной, то, установив связь с учеными в удаленной галактике, мы сможем отныне узнать, живут ли они в мире из материи или антиматерии. Для этого надо просто сказать им, чтобы они провели один из экспериментов с нарушением CP-симметрии. Если их описание точно совпадет с нашим собственным описанием того же эксперимента, то мы не взорвемся, когда прилетим к ним. Вполне может случиться, что во Вселенной нет галактик из антиматерии. Но физики любят уравновешивать все на свете, и если во Вселенной имеется столько же антиматерии, сколько материи, то могут существовать области космоса, в которых все три симметрии меняют знак. События в нашем мире, однозначные относительно CPT, будут все идти противоположным путем в CPT-обращенной галактике. Материя такой галактики должна быть зеркально отраженной, противоположной по заряду и двигающейся назад во времени.
Но что значит сказать — события в галактике идут назад во времени? Об этом никто не знает ничего реального. Новые эксперименты указывают всего лишь на преимущественное направление времени для некоторых взаимодействий частиц. Однако имеет ли эта «стрела» какую-либо связь с другими «стрелами времени» наподобие тех, которые определяются процессами излучения, законом возрастания энтропии и психологическим временем живых организмов? Указывают ли все эти «стрелы» в одну и ту же сторону, или они могут независимо указывать разные направления?
Наиболее популярный способ придать какой-то смысл «обратному времени» издавна заключался в том, чтобы вообразить мир, в котором процессы «перетасовки» идут наоборот — от беспорядка к порядку. Людвиг Больцман, австрийский физик прошлого века, один из основателей статистической термодинамики, сознавал, что, после того как молекулы газа в замкнутом изолированном сосуде достигнут состояния теплового равновесия — то есть будут двигаться в полном беспорядке, а значит, с максимальной энтропией, — в нем все-таки всегда будут образовываться небольшие области, где энтропия кратковременно уменьшается. Эти области должны уравновешиваться другими областями, где энтропия увеличивается, так что усредненная энтропия остается неизменной.
Больцман представлял себе космос безбрежным, возможно бесконечным в пространстве и времени, средняя энтропия которого максимальна — то есть в нем царит полный беспорядок. Но в этом же космосе есть области, где энтропия иногда уменьшается. («Область» может охватывать миллиарды галактик, а «иногда» может растянуться на миллиарды лет.)
Возможно, разбегающиеся волны нашей части бесконечного океана пространства-времени представляют область, в которой произошло такое отклонение: когда-то в прошлом, возможно во время первоначального Большого взрыва, энтропия вдруг уменьшилась; теперь она увеличивается.
В вечном и бесконечном потоке возник кусочек порядка; теперь этот порядок опять рассыпается, и наша «стрела времени» летит по обычному направлению увеличения энтропии. Есть ли иные области пространства-времени, задал вопрос Больцман, в которых «стрела» энтропии указывает в другую сторону? И если они есть, то будет ли правильным говорить, что время в таких областях течет вспять, или надо просто считать, что энтропия там уменьшается, а сама область продолжает развиваться вперед во времени?
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОК