Разработка ингибиторов коррозии для защиты металлов в неводных средах
С. А. Балезин и Л. В. Бабич, вероятно, были первыми в нашей стране исследователями коррозии и защиты металлов в неводных средах [104]. Совместно с В. М. Чистяковым ими были изучены факторы, влияющие на механизм и кинетику разрушения стали в четыреххлористом углероде [154, 156, 173, 177]. Оказалось, что этот процесс начинается только при 20%-ной влажности продукта и что одним из определяющих факторов этого процесса является наличие в среде кислорода. Другим действующим фактором, особенно в начальной стадии процесса, был назван хлороводород, образующийся как конечный продукт гидролиза четыреххлористого углерода.
Исследователи отметили три периода процесса коррозии металла в условиях постоянного притока влаги извне — индукционный, фазовоповерхностный и гидролитический. Для индукционного периода характерны следующие процессы: конденсация влаги на поверхности стали, каталитический гидролиз CCl4, начало разрушения оксидной пленки продуктами гидролиза и начало функционирования гальванических пар типа пленка—пора. От соотношения этих процессов зависит продолжительность данного периода.
Второй период связан с образованием на поверхности стали сплошного фазового слоя продуктов коррозии, состоящих из гидроксидов и хлоридов железа. В этот период наблюдается поглощение кислорода из воздуха. Электрохимические процессы коррозии на данном этапе идут со смешанной деполяризацией (кислородно-водородной). Скорость коррозии во времени уменьшается. В третьем периоде образующиеся продукты коррозии (прежде всего хлориды железа) подвергаются гидролизу. Гидролитический период в полной мере обнаруживается только тогда, когда возможен постоянный приток влаги в CCl4 извне (например, из слоя воды над CCl4). Это приводит к увлажнению продуктов коррозии на поверхности стали и накоплению хлоридов железа.
Были подобраны семь перспективных ингибиторов, защищающих углеродистую сталь от коррозии в жидкой и паровой фазах, а также по ватерлинии в системах CCl4—воздух, CCl4—вода и вода—воздух. В итоге были даны рекомендации по защите стальной тары, используемой для транспортировки и хранения четыреххлористого углерода.
Позднее С. А. Балезин вновь обратился к неводным и смешанным средам. В работе с Э. И. Ждановой было изучено коррозионное поведение стали-101 в водноспиртовых растворах. Было установлено, что максимальная скорость коррозии стали наблюдается при концентрации этилового спирта 25%. Авторами были предложены композиции для защиты стальных изделий от коррозии в водно-спиртовых растворах [379].
В конце 60-х годов С. А. Балезин заинтересовался вопросами коррозии и защиты металлов в двухфазных средах, встречающихся в нефтяной промышленности.
Совместно с А. А. Тоником он разработал нёкоторыё вопросы механизма защитного действия ингибиторов сероводородной коррозии в системе электролит—углеводород [192]. По мнению авторов, в механизме защитного действия ингибиторов коррозии дифильной структуры большую роль играет не только прочная связь ингибитора с поверхностью металла, но и структура защитной пленки, образованной ориентированными гидрофобными радикалами молекул ингибитора, Эта пленка, «химически» прочно закрепленная на защищаемой поверхности, эффективно выполняет роль особого барьера, препятствующего проникновению агрессивной среды к защищаемому металлу. Работа была доложена на III Международном конгрессе по коррозии металлов и вызвала большой интерес.
Исследования в этой области и сейчас успешно продолжают А. А. Гоник и Т. В. Кемхадзе.
Большое практическое значение имели работы по подбору антикоррозионных присадок к бензинам.
С. А. Балезин совместно с И. С. Солодкиным и Н. Н. Смирновой изучали влияние органических присадок к топливу на износ автомобильных двигателей [133, 134]. В качестве ингибиторов в бензины разных марок вводились производные аминов. Эксперименты показали, что аминные добавки снижают агрессивность продуктов сгорания бензина по отношению к серому чугуну. Лучшее защитное действие проявил диэтиламин, более чем вдвое сокративший поражения металла. Из фосфорорганических присадок испытывались эфиры ортофосфорной кислоты. Было обнаружено, что антикоррозионное действие этих соединений увеличивается с уменьшением их молекулярной массы.
Таким образом, и в этих исследованиях была подтверждена принципиальная возможность защиты двигателей внутреннего сгорания и выхлопных трактов двигателей с помощью ингибиторов коррозии.
В конце 70-х годов С. А. Балезиным с сотрудниками были выполнены работы по изучению влияния ингибиторов на коррозионную активность и анионный состав конденсатов продуктов сгорания моторных топлив. Было показано, что фосфорсодержащие добавки к этилированным бензинам со смешанным хлористобромистым выносителем увеличивают коррозионную активность конденсатов, а присадки аминного типа практически не изменяют ее [403]. Также было устанойлейо, что на коррозионную активность и анионный состав конденсатов продуктов сгорания этилированных бензинов большое влияние оказывает состав выносителей [401, 409].
Изучение влияния ингибиторов на прочностные характеристики металлов В 1960—1962 гг. С. А. Балезин и В. В. Романов изучали влияние ингибиторов на коррозионно-механическое разрушение металлов (КМР). В результате первого в стране исследования влияния ингибиторов коррозии на коррозионное растрескивание (КР) было установлено, что с помощью ингибиторов, ингибированных смазок и сочетания ингибиторной защиты с катодной защитой в среде, содержащей хлориды, можно длительно защитить металл от КР без облегчения коррозионных, механических, температурных условий эксплуатации металла. При этом выяснилось, что неопасные ингибиторы (за исключением иодида калия) увеличивают индукционный период возникновения трещин, снижают скорость их развития в глубь металла вследствие торможения его ионизации адсорбированными ингибиторами в концентраторах напряжения [152, 163, 165].
В ходе работы были уточнены некоторые вопросы механизма защитного действия ряда ингибиторов. Оказалось, например, что ингибиторы ПБ-5, ПБ-8, БА-12 и катапины при некоторых условиях образуют на металле гелеобразные пленки, экранирующие металл.
1960 г. С. А. Балезин, Н. И. Подобаев и В. В. Романов впервые установили, что с помощью органических ингибиторов, введенных в смазки и масла, можно предотвратить растрескивание металла. При этом было выявлено защитное начало многокомпонентных эффективных смазок [152]. Исследователи изучили также влияние некоторых ингибированных смазок на растрескивание латуни в парах аммиака. Они показали, что смазки 14-Р, 12-Р и ЦИАТИМ-51 существенно замедляют скорость коррозионного растрескивания металла.
Защитный эффект консистентных смазок уменьшается при попадании на покрытие капель водного раствора аммиака. Желтая кровяная соль, введенная в смазку, эффективно снижает коррозионное растрескивапие латуни в парах аммиака. Тонкий слой ингибитора, нанесенный окунанием образцов в дибутилфталат, также тормозит растрескивание латуни. В то же время введение дибутилфталата в жидкие масла не влияет на скорость ее растрескивания.
Металлографическими исследованиями показано, что характер коррозионного растрескивания латуни в атмосфере аммиака носит смешанный характер, преимущественно межкристаллитный, независимо от того, защищалась латунь чистыми или ингибированными смазками. Для уточнения механизма защитного действия смазок и ингибиторов при растрескивании латуни потребовалось изучить влияние выбранных покрытий и добавок на электродный потенциал и кинетику электродных процессов. Были получены кривые катодной и анодной поляризации латуни в присутствии эффективных смазок.
Было показано, что многокомпонентные консистентные смазки предохраняют латунь от растрескивания в атмосфере аммиака надежнее, чем масла. С. А. Балезин объяснял это более высокими сорбционными свойствами многокомпонентных смазок. Они лучше, чем масла, защищают металл и от растрескивания при попадании на них капель коррозионной среды. Смазки, защищающие латунь от коррозии, предохраняют ее п от коррозионного растрескивания; при сильном замедлении общей коррозии снижается и скорость коррозионного растрескивания. На основании этого был сделан вывод о том, что процесс коррозионного растрескивания латуни в парах аммиака электрохимический.
С. А. Балезин и В. В. Романов изучили также влияние некоторых ингибиторов на коррозионное растрескивание магниевого сплава МА-2, обладающего малой плотностью, высокими механическими свойствами и отличной обрабатываемостью [242]. Применение этого сплава в различных отраслях народного хозяйства ограничено его низкой устойчивостью против коррозионного растрескивания.
Исследования показали, что фосфаты, фториды, силикаты, нитриты эффективно замедляют коррозионное растрескивание этого сплава. Натриевые соли масляной, капроновой и бензойной кислот, бензоат аммония и бензоат моноэтаноламина полностью приостанавливают процесс коррозионного растрескивания в исследованных условиях. При этом было выявлено, что в ряду натриевых солей жирных кислот с увеличением длины углеродной цепи наблюдается рост их защитного действия. Такую закономерность изменения защитного действия авторы объясняют тем, что молекулы располагаются вдоль поверхности металла, энергия их адсорбции линейно растет с увеличением длины цепи. Было также установлено, что тормозящее действие на коррозионное растрескивание смеси бензоата натрия и аммония с нитратом натрия значительно выше, чем действие каждой из этих солей в отдельности.
Обнаружилось, что увеличение концентрации ингибиторов влияет на химическую стойкость металла по- разному: с ростом концентрации фосфата, нитрита и фторида натрия скорость коррозии понижается, а в случае бензоата моноэтаполамина — увеличивается; бензоат натрия ускоряет общую, но тормозит питтинговую коррозию. Несмотря на кажущиеся противоречия, между скоростью растрескивания и характером коррозии устойчивость сплава к растрескиванию повышалась. Торможение коррозионного растрескивания даже при общем росте скорости коррозии С. А. Балезин объяснил первоочередным стравливанием с поверхности металлов имеющихся там концентраторов напряжения.
С. А. Балезин совместно с С. В. Пушкиной и В. В. Романовым продолжил изучение влияния ингибиторов на коррозионную усталость того же магниевого сплава МА-2 [209]. Проведенные ими исследования подтвердили, что циклическая и статическая коррозионная усталость металлов и сплавов имеют электрохимическую природу. При коррозионной усталости и коррозионном растрескивании большую роль в процессе разрушения играют защитные оксидные пленки на поверхности металла. Увеличение концентрации окислителя (нитрита натрия) вызывает укрепление защитной пленки и снижение эффективности специфических коррозионных пар Эванса. Развитие трещин коррозионной усталости связано не только с работой пар Эванса, но и с чисто механическим разрушением решетки металла. Можно считать, что чисто механические факторы в развитии коррозионно-усталостных трещин могут на определенном этапе разрушения превалировать над электрохимическими, ввиду чего полное подавление электродных процессов не предотвращает полностью коррозиопной усталости. Можно также предположить, что пары Эванса при циклическом нагружении работают существенно эффективнее, чем в условиях статического нагружения.
Выработав представления об электрохимической природе и механизме коррозионного растрескивания и показав возможность защиты металлов от такого растрескивания с помощью ингибиторов коррозии, С. А. Балезин, В. В. Романов и ряд сотрудников кафедры продолжили работы, изучив защитное действие ингибиторов при коррозионном растрескивании легких сплавов на основе алюминия в растворах хлорида натрия при разных pH [316, 348, 365]. В то время в литературе не было сведений о применении ингибиторов коррозии для защиты от растрескивания высокопрочных деформированных легких сплавов.
В ходе многочисленных экспериментов было исследовано влияние более сорока органических и неорганических веществ на устойчивость к растрескиванию сплава В-95. Лучшие результаты показали ингибиторы ПБ-5, БА-12, дибензилсульфоксид (DBS), тиомочевина, пиридин и ЧМ. Из исследованных неорганических соединений заслуживают внимания желтая и красная кровяные соли и иодид калия, тормозящие растрескивание в 3—6 раз. Защитное действие желтой и красной кровяной соли С. А. Балезин и сотрудники связывают с образованием на поверхности металла вторичной пленки нерастворимого комплексного соединения, одновременно тормозящей и коррозию, и растрескивание.
Сравнение коэффициентов торможения растрескивания и коррозии показало, что ингибиторы по-разному влияют на скорость коррозии и растрескивания: DBS и тиомочевина по мере увеличения концентрации тормозят эти процессы примерно в равной степени. В то же время с повышением концентрации желтой кровяной соли и иодида калия преимущественно замедляется лишь скорость коррозии. Было установлено, что наибольшее влияние ингибиторы оказывают на первую стадию — уменьшают скорость коррозии под напряжением до трещинообразования (и тем больше, чем выше концентрация ингибитора). Сравнительно меньше ингибиторы влияют па вторую стадию — трещипообразованис. На третью стадию — чисто механический разрыв металла напряжениями, превышающими его предел прочности, — влияние ингибиторов незначительно.
Поляризационные кривые показывают, что изученные ингибиторы в выбранных условиях преимущественно влияют на катодный процесс. Механизм влияния ингибиторов на кинетику электродных процессов С. А. Балезин и его сотрудники связывают с адсорбцией на катодных участках металла, затрудняющей диффузию и разряд ионов водорода, т. е. увеличивающей перенапряжение водорода. Для всех изученных ингибиторов характерно смещение стационарного потенциала металла в отрицательную сторону, и чем сильнее такое смещение, тем выше ингибиторный эффект добавки.
Для выяснения природы коррозионного растрескивания алюминиевых сплавов исследовалось одновременное действие поляризации и ингибитора коррозии. Серия экспериментов показала, что в присутствии ингибитора величина защитного тока уменьшается — это свидетельствует о суммировании тормозящего действия катодного тока и ингибитора; кроме того, оказалось, что с помощью анодной поляризации можно полностью устранить защитный эффект ингибитора. Таким образом, была выявлена связь увеличения сопротивления металла растрескиванию с торможением анодных процессов.
Как известно, в основе современных представлений о механизме зарождения и развития коррозионных трещин лежит гипотеза Эванса о возникновении на поверхности напряженного металла при погружении его в растворы электролитов специфических коррозионных пар. С. А. Балезин с соавторами подтвердил эту гипотезу на примере алюминиевого сплава В-95, корродирующего под напряжением в коррозионной среде [316]. Установлено, что неорганические ингибиторы в меньшей степени, чем органические, могут уменьшать эффективность специфических коррозионных пар. Дибензилсульфоксид тормозит коррозионное растрескивание и скорость коррозии сплава примерно в равной степени, а желтая кровяная соль и иодид калия в большей степени тормозят скорость коррозии, чем растрескивание. Результаты этой работы дали основание С. А. Балезину связывать тормозящее действие ингибиторов коррозии на процесс коррозионного растрескивания с их влиянием на эффективность специфических коррозионных пар.
Изучение влияния pH среды на коррозионное растрескивание алюминиевых сплавов в растворах поваренной соли показало, что подщелачивание среды значительно увеличивает весовые потери металла, но в меньшей мере влияет на коррозионное растрескивание. Подкисление же при относительно меньшем влиянии на общую коррозию существенно стимулирует растрескивание металла. При pH-14 интенсивная сплошная язвенная коррозия алюминиевого сплава приводит к уменьшению поперечного сечения образцов и затрудняет появление и развитие коррозионно-усталостных трещин. При рН-1 сравнительно более локализованная коррозия (мелкий питтинг, сочетающийся с межкристаллической коррозией) облегчает действие коррозионно-механических факторов, приводящих к максимальной потере прочностных свойств: межкристаллитные поражения приводят к ускоренному развитию коррозиопио-усталостных трещин. В нейтральных средах плотная оксидная пленка защищает металл от общих коррозионных потерь, а потому и влияние их на потерю циклической прочности проявляется незначительно. Эти результаты исследователи объясняли, исходя из того, что чисто коррозионные поражения связаны с работой поверхностных микроэлементов, а коррозионно-механические — с работой специфических пар Эванса. По мнению С. А. Балезина, уплотнение защитной пленки не может в равной мере влиять на эффективность обычных микроэлементов и специфических пар, так как аноды обычных микроэлементов расположены на поверхности, а аноды специфических пар удалены от нее и работают на дне первичных концентраторов напряжений и коррозионно-усталостных трещин.
Было установлено, что снижение потери прочности алюминиевых сплавов по механизму чисто коррозионных поражений в кислых растворах больше, чем в нейтральных. В то же время ингибиторы уменьшают скорость коррозии примерно в одинаковой степени в кислой и нейтральной среде. Это лишний раз свидетельствует об отсутствии прямой связи между скоростью коррозионно-усталостных разрушений и кинетикой коррозип сплавов [316, 330, 348, 365, 375, 395].
Опираясь на результаты цикла работ по коррозионной усталости металлов, С. А. Балезии показал, что выбор специфического ингибитора для защиты от коррозионной усталости зависит от вида материала и механизма его разрушения. Для материалов типа латуни и алюминия были предложены ингибиторы, образующие прочную эластичную защитную пленку, усиливающую сопротивление разрыву при циклических нагрузках естественной оксидной пленки. Такие ингибиторы исключают появление питтингов, служащих началом зарождающихся трещин, не допускают появления и развития субмикротрещин. Указанные выводы нашли также подтверждение в работах, проведенных С. А. Балезиным совместно с И. А. Подольным, В. В. Минкиным, В. С. Уткиным и др. [405, 407, 419].
Было исследовано также влияние механотермической обработки (МТО) и многократной МТО (ММТО) на коррозионно-усталостную прочность углеродистой стали-2 в растворах солей и кислот. Оба вида упрочняющей обработки увеличивают циклическую прочность металла. Для уточнения природы воздействия упрочняющей обработки на циклическую прочность стали в выбранных средах изучалось влияние МТО и ММТО на скорость коррозии и электрохимические характеристики металла. Оказалось, что в 3%-ном растворе NaCl оба вида обработки не изменяют скорости коррозии, в кислом растворе МТО несколько уменьшает ее, а ММТО, наоборот, увеличивает. Исследование поляризуемости стали показало, что в 3%-ном растворе NaCl упрочняющая обработка не сказывается на кинетике катодного и анодного процессов; несущественно ее влияние и на поляризуемость металла. В кислом растворе МТО и ММТО способствует протеканию катодного процесса. МТО несколько тормозит анодный процесс, а ММТО, наоборот, незначительно его облегчает. Поведение стали в упрочненном состоянии в коррозионных средах С. А. Балезин объяснял, исходя из представлений, согласно которым развитие коррозионно-усталостных трещин имеет две стадии: чисто механнческую и механоэлектрическую.
Из сопоставления защитных свойств ряда ингибиторов с изменениями механических характеристик высокопрочной мартенситной стали стало очевидным отсутствие однозначной зависимости между защитными свойствами ингибиторов и их влиянием на механические характеристики.
С. А. Балезин с сотрудниками изучил также зависимость циклической прочности металла на воздухе от природы и концентрации ингибиторов, температуры и продолжительности обработки на примере малоуглеродистой стали [377, 417]. Согласно полученным данным, обработка стали-2 раствором H2SO4 в присутствии ингибиторов — катапина «А» и «К» ПК-М — значительно увеличивает время до разрушения образцов при циклическом нагружении на воздухе, а введение ингибиторов ЧМ, И-I-А, БА-6 и ИК-5 влияет на этот процесс противоположным образом. Вот почему далеко не все ингибиторы, достаточно хорошо замедляющие коррозию стали, оказывают упрочняющее действие при добавлении их в раствор кислоты.
В ряде экспериментов исследовалось влияние температуры (0—50°) на эффект обработки в растворе H2SO4 с катапином «А». Наибольшее повышение прочности отмечается у образцов, обработанных при t = 10°, при более низких и высоких температурах этот эффект уменьшается или полностью исчезает. Все исследованные ингибиторы примерно одинаково тормозят коррозию металла в растворах H2SO4, воздействуя преимущественно на катодный процесс.
Работы С. А. Балезина и его сотрудников в области изучения влияния ингибиторов на растрескивание и коррозионную усталость металлов подтвердили, что в зависимости от характера среды в той или иной мере меняются физико-химические (рабочие) свойства металлов. Это означает, что с помощью ингибиторов коррозии можно управлять не только собственно коррозионными процессами, но и вообще долговечностью металлоизделий. Внедрение результатов этих исследований С. А. Балезина и его сотрудников в промышленность оказалось весьма перспективным для развития отечественной техники.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОК