Исследование коррозии и защиты металлов в водных растворах кислот
Исследование коррозионных процессов и поиски методов борьбы с ними были начаты на кафедре с изучения кислых сред. В ходе работы систематически изучалась кинетика растворения железа, азотированной стали, углеродистых и легированных сталей, меди в неорганических и органических кислотах в зависимости от температуры, давления, концентрации кислот, скорости циркуляции растворов, предварительной термической и механической обработки и т. д. Было показано, что скорость растворения углеродистых сталей с изменением концентрации раствора серной и соляной кислот меняется неодинаково. В серной кислоте по мере увеличения ее концентрации скорость растет, достигая максимума при концентрациях 6—7 моль/л. Выше этих концентраций она резко уменьшается, и при концентрации кислоты 8,5 моль/л сталь пассивируется. В соляной кислоте с увеличением концентрации раствора скорость растворения стали возрастает непрерывно, сначала медленно (в пределах концентраций раствора от 0,01 до 4 моль/л), а затем быстрее — при более высоких концентрациях.
В растворах соляной, серной (до 7 моль/л) и уксусной кислот скорость коррозии (р) линейно возрастает с увеличением активности кислоты (a): ? = К an, где К и n — константы. Константа п характеризует природу кислоты. Для серной кислоты значение n = 0,67, для соляной — 0,85, для уксусной — 0,33. Величина константы К зависит от природы кислоты и от состава стали. При растворений сталей в серной кислоте коэффициент К растет с увеличением содержания углерода в стали от 25,39 до 53,5, в соляной кислоте — в пределах 1,88—4,59, в уксусной — соответственно от 1,08 до 1,93. Сильно влияет на скорость растворения стали повышение температуры. Так, в растворах соляной кислоты при повышении температуры на 10° скорость коррозии увеличивается в 2—3 раза. Исследования показали, что скорость растворения углеродистых сталей в растворах одной концентрации серной, соляной и уксусной кислот возрастает непрерывно с повышением содержания углерода в стали.
Перемешивание раствора при вращении стального образца также отражается на скорости растворения последнего. В деаэрированных растворах кислот облегчается отрыв пузырьков водорода и тем самым снижается их экранирующее действие. В аэрированных растворах перемешивание раствора способствует процессу кислородной деполяризации. Кислород в кислых средах оказывает стимулирующее действие на коррозию стали. С повышением концентрации кислоты растворимость кислорода снижается. Уменьшается и его долевое участие в катодной реакции.
В деаэрированных растворах кислот, особенно соляной, при низких концентрациях влияние потока на скорость коррозии выражено слабо. Кривые зависимости скорости коррозии стали от скорости потока деаэрированной соляной кислоты (5 моль/л) проходят через максимум; аналогичен и ход кривых в опытах с аэрированным пятимолярным раствором кислоты, правда, кривые при этом сдвинуты в область более высоких значений скорости коррозии.
Перечисленные выше исследования явились ступенью в поиске методов защиты металла в кислых средах.
Как уже говорилось, в 1946 г. С. А. Балезин, И. П. Путилова и В. П. Баранник были удостоены Государственной премии СССР за разработку ингибиторов коррозии и создание химических способов очистки оружия от ржавчины. Их первые ингибиторы кислотной коррозии — «уникол» марки мн, мн-2, мн-3, мн-10 — были применены для замедления коррозии черных металлов при травлении их в серной кислоте, а «уникол» марки ПБ, ПБ-3, ПБ-4 и ПБ-5 — в соляной кислоте.
Ингибитор ПБ-5 является продуктом конденсации уротропина и анилина. Он сразу же начал служить присадкой к концентрированной соляной кислоте, транспортируемой в стальных цистернах, обеспечивая почти полную защиту корпуса цистерны от коррозии. Таким образом была решена очень важная проблема перевозки соляной кислоты. Ингибитор ПБ-5 успешно применяется и сейчас при стравливании соляной кислотой окалины и ржавчины с черных металлов, накипей с внутренних поверхностей паровых котлов, а также для защиты оборудования нефтяных скважин при закачке в нефтеносные карбонатные пласты соляной кислоты, которая, растворяя карбонаты, увеличивает приток нефти.
В 1947 г. С. А. Балезин и С. Д. Бесков систематизировали литературные данные о веществах, тормозящих коррозию черных металлов в кислотах [31]. В то время было известно около 90 веществ, проявляющих высокое защитное действие (>80%) при коррозии сталей в соляной и серной кислотах (ацетилен, азотсодержащие соединения, некоторые соединения, содержащие гетероатомы серы и азота, и др.). Позднее в поисках новых эффективных ингибиторов для процессов травления сталей в соляной кислоте В. Н. Долинкин и С. А. Балезин исследовали возможность применения для этой цели высших пиридиновых оснований. На их основе был разработан промышленный синтез ингибиторов серии «И» [251, 252, 261, 268].
Ингибитор И-IA замедляет коррозию не только углеродистых сталей в соляной кислоте, но и нержавеющих сталей, несколько уменьшает коррозию меди, латуни. Высокое тормозящее действие ингибитор оказывает на коррозию цинка и алюминия. Он также эффективно защищает от коррозии углеродистую и нержавеющую сталь в серной кислоте.
Ингибитор И-IB был внедрен на ярославском заводе «Свободный труд» и в настоящее время нашел широкое применение в различных областях техники.
На основе пиридина и алкиларилхлоридов В. И. Комаров и С. А. Балезин разработали ингибитор катапин (додецилбензилпиридинийхлорид) — высокоэффективный ингибитор коррозии стали в кислотах. Исследования электрохимическими методами показали его электростатическую и специфическую адсорбцию на металле. Ингибитор тормозит оба электродных процесса, но преимущественно катодный.
Катапин — один из наиболее эффективных ингибиторов коррозии стали в соляной, серной, сероводородной и органических кислотах при температуре до 100°. Смеси ингибиторов на основе катапина эффективны и при температуре до 170°. К тому же катапин обладает высокой поверхностной активностью, что делает его незаменимым поверхностно-активным веществом, способствующим вытеснению нефти из обводненных пластов.
Исследования показали, что катапин при концентрации >20 % подвергается гидролизу с образованием нерастворимого спирта и пиридина и его защитное действие в течение первых суток резко снижается. В связи с этим С. А. Балезин, Н. И. Подобаев и В. В. Васильев исследовали зависимости устойчивости и защитного действия солей четвертичных аммониевых оснований в соляной и серной кислотах от их строения.
На основе пиридина был синтезирован еще целый ряд соединений, отличающихся длиной углеродной цепи, строением и количеством радикалов, положением азота в молекуле (в цикле и в алифатической цепи). Исследование защитного действия таких веществ по отношению к стали-10, проведенное в растворах НСl и H2SO4 с концентрацией 4 моль/л в широком интервале температур, показало, что алкилбензилпиридинийхлориды в значительной мере превосходят по эффективности аналогичные алкилпиридинийхлориды.
Радикал С2Н5-, введенный в бензольное кольцо, резко повышает защитное действие. Удлинение алкильного радикала влечет за собой снижение поверхностного натяжения раствора алкилбензилпиридинийхлорида в кислоте, но не повышает защитного действия. Соединения с нормальным строением радикала менее эффективны как ингибиторы, чем соединения с радикалом изостроения. Увеличение числа алкильных радикалов в бензольном ядре алкилбензилпиридинийхлоридов снижает их защитное действие при повышенных температурах. Выдвижение азота из цикла в алифатическую цепь влечет за собой заметное снижение защитного действия при повышенных температурах в соляной кислоте и некоторое повышение в серной кислоте,
Исследования показали, что алкилбензилпиридинийхлориды относятся к ингибиторам смешанного, преимущественно катодного, действия. Они адсорбируются на стали из раствора соляной кислоты специфически и удерживаются на поверхности в широкой области потенциалов. Катапин и особенно композиции на его основе нашли широкое применение в теплоэнергетике, в нефтедобыче, в травлении металлов.
Взяв за основу продукты конденсации уротропина, группа сотрудников (А. Г. Воскресенский, Г. Ф. Семиколенов и др.) под руководством С. А. Балезина и Н. И. Подобаева разработала серию ингибиторов «ПКУ», эффективных как при кислотном травлении сталей, так и при химической очистке теплоэнергетического оборудования [289]. Промышленностью в настоящее время выпускается ингибитор ПКУ-Э, эффективный во всех кислотах, в том числе в присутствии злейшего врага черных металлов — сероводорода. Ингибитор отличается стабильностью, высоким защитным действием, сохраняющимся и при высоких температурах. В интервале от 20 до 100° он превосходит по эффективности большинство отечественных ингибиторов. Так, в соляной кислоте его защитное действие для стали в 1,5—2 раза выше, чем ингибитора БА-6; он также тормозит растворение цинка и алюминия.
Синтез промышленно пригодных ингибиторов не может быть успешным, если он не опирается на достоверно установленные закономерности связи между химическим составом органических веществ, их строением, с одной стороны, и их защитным действием — с другой. Только на основе таких данных поиск ингибиторов может быть целенаправленным. Именно поэтому С. А. Балезин всегда уделял серьезное внимание систематическому изучению зависимости защитного действия различных классов органических соединений от их строения.
В качестве примера можно привести ранние работы, выполненные С. А. Балезиным совместно с С. К. Новиковым и В. С. Кемхадзе. Они изучали защитное действие альдегидов жирного и ароматического рядов при травлении стали-20 в серной и соляной кислотах [28, 48, 46]. В процессе исследований выяснилось, что защитное действие этих альдегидов с увеличением молекулярной массы снижается.
Исторически сложилось так, что одними из первых исследованных ингибиторов коррозии были азотсодержащие органические соединения. Основываясь на сходстве химических свойств соединений элементов, принадлежащих к одной подгруппе периодической системы Д. И. Менделеева, С. А. Балезин высказал предположение об ингибирующих свойствах аналогичных фосфорорганических соединений. Эта гипотеза нашла свое полное подтверждение в работах, выполненных им совместно с М. А. Игнатьевой [89, 92], а позднее с Т. К. Атанасян и Е. С. Ивановым [389, 397, 408]. Исследованию были подвергнуты четвертичные соли фосфония. Высокое защитное действие в растворах серной кислоты показали добавки всего лишь 5 • 10-4 моль/л фосфониевых солей (ФС). Было обнаружено, что защита рядовых сталей в таких средах во многом зависит от наличия в последних растворенного кислорода, стимулирующего разрушение металла. Снижение защитного действия ФС в присутствии кислорода можно объяснить тем, что в приэлектродном слое происходит взаимодействие кислорода с фосфониевой солью. В результате этого, по-видимому, образуются продукты, которые являются менее аффективными ингибиторами. Более слабые ингибирующие свойства полученных продуктов окислительно-восстановительной реакции обусловливают в целом более низкие ингибирующие эффекты в аэрируемой кислоте (по сравнению с деаэрируемой).
Фосфониевые соли тормозят коррозионный процесс как по энергетическому, так и по блокировочному механизму. В области малых концентраций ФС реализуется преимущественно энергетический механизм, в области больших (>10-4 моль/л) —блокировочный механизм торможения.
Изучив влияние заместителей в бензольном кольце на распределение электронной плотности у атома фосфора, авторы показали, что защитное действие фосфониевых солей зависит от полярных свойств заместителей, характеризуемых константой Гаммета. Для трифеииларилфосфониевых солей с увеличением электроакцепторных свойств заместителя эффективность четвертичных фосфониевых солей как ингибиторов кислотной коррозии возрастает. В этом случае с усилением донорно-акцепторного взаимодействия между фосфором и азотом возможен также эффект упрочнения ионной связи в молекуле ФС. Увеличение электроноакцепторных свойств заместителей приводит к смещению электронной плотности заместителя через сопряженную р—я систему бензольного кольца и к возрастанию положительного заряда на атоме фосфора. Максимальное защитное действие наблюдается при введении сильного электроноакцепторного заместителя нигрогруппы — NO2 в бензольное кольцо четвертичных фосфониевых солей. Позднее С. А. Балезин с сотрудниками доказали наличие ингибирующих свойств у органических соединений, содержащих в своем составе два других элемента пятой группы — мышьяк и сурьму.
Для того чтобы данные лабораторных исследований лучше проецировались на реальные производственные процессы, С. А. Балезин стремился собрать исчерпывающие сведения о влиянии самых различных факторов на коррозию и защиту металлов. Систематическому изучению подверглась кинетика травления в кислотах сталей с различным содержанием углерода и легирующих элементов, изучалось влияние на этот процесс концентрации кислоты, ингибитора и накапливающихся в растворе продуктов травления. Специальные исследования были посвящены анализу влияния температуры травильных растворов, давления в коррозионных системах, скорости потока коррозионной среды.
С. А. Балезин часто становился инициатором проведения многофакторного химического эксперимента, активно участвуя в его планировании и обсуждении результатов. И каждая такая работа вносила свой вклад в теорию защиты металлов. Так, при исследовании влияния скорости потока кислот на защитное действие замедлителей коррозии, в частности уротропина, триэтаноламина, иодида калия, катапина и других, было показано, что защитные свойства ингибиторов существенно зависят от скорости потока коррозионной среды. Обнаружилось, что ингибиторы кислотной коррозии в потоке тормозят процесс кислородной деполяризации.
Исследовалось влияние давления газа над серной кислотой в присутствии замедлителей и стимуляторов. Оказалось, что скорость растворения стали в серной кислоте при остаточном давлении 2 кПа почти в 2 раза меньше, чем при нормальном давлении. В такой кислоте растворенного кислорода очень мало и его роль в растворении стали крайне ничтожна. С понижением давления скорость образования пузырьков водорода, которая в какой-то мере определяет скорость процесса растворения, сильно возрастает. При наблюдении за процессом растворения стали при 2 кПа создается обманчивое впечатление крайне бурного выделения водорода (раствор «кипит»). Этот газовый слой экранирует поверхность металла от воздействия кислоты. При пониженном давлении в присутствии тиодигликоля скорость растворения стали почти не уменьшается. Эффект замедления возрастает с повышением давления. И наоборот, стимулирующее действие паранитроанилина уменьшается с повышением давления.
С. А. Балезин, Н. И. Подобаев и Ф. К. Курбанов провели систематическое исследование поведения углеродистых сталей в соляной кислоте при высоких температурах и давлениях, в том числе с применением ингибиторов коррозии [194, 195, 212, 218, 219]. Была показана зависимость скорости растворения стали в соляной кислоте от температуры при постоянном давлении: при температуре до 153° эта зависимость подчиняется тем же закономерностям, что и при температуре до 100°. Приближенно это можно описать следующим уравнением:
? = Ае (-Eэф/RT),
где А — постоянная; Еэф — эффективная энергия активации процесса.
Зависимость скорости растворения стали от концентрации кислоты при давлениях до 200 атм (20,26 X 103 кПа) и температуре до 155° выражена уравнением
? = b (а±)n
где а± — средняя активность катионов и анионов; b, n — константы.
С увеличением давления скорость растворения стали в соляной кислоте уменьшается за счет формирования более плотной пленки шлама. Защитное действие ингибиторов в области высоких давлений сильно снижается (пленка шлама не образуется, увеличивается растворимость водорода, и экранирующее действие газообразного водорода ослабевает).
С. А. Балезиным совместно с Н. И. Подобаевым и А. М. Солок исследовано влияние ультразвука на процесс травления стали в 15 %-ном растворе соляной кислоты с ингибиторами ПБ-5, БА-6, ПБ-8/2, И-I-В и ПКМ при температуре +40° [281]. Оказалось, что ингибиторы тормозят растворение чистого металла в ультразвуковом поле, почти не замедляя процесса удаления окалины. Эти работы определили еще один важный метод интенсификации кислотного травления металлов.
С. А. Балезин и К. Н. Смирнов исследовали влияние легирующих добавок хрома, никеля и меди на коррозию и ингибиторную защиту стали в растворах серной и соляной кислот [164, 188].
Вместе с И. И. Кейлиным ученый изучал влияние галоид-ионов на кинетику восстановления водорода и ионизации железа-армко в деаэрированном растворе серной кислоты [342, 357]. Было показано, что галоидионы повышают перенапряжение выделения водорода, которое с увеличением концентрации галоид-ионов стремится к пределу. Это связано с максимальным заполнением поверхности металла галоид-ионами и, следовательно, с изменением кинетики выделения водорода. Введенные галоид-ионы существенно изменяют кинетику активного растворения железа. При потенциалах, близких к стационарному, они сильно тормозят анодную реакцию, при более высоких потенциалах наряду с другими анионами принимают участие в элементарных стадиях ионизации металла.
Интересные результаты дало и изучение адсорбции йодид-ионов из кислых сульфатных растворов на железе. Оказалось, что величина необратимой адсорбции зависит от потенциала электрода и pH раствора. При адсорбции из кислых растворов иодид-ионы могут хемосорбироваться на железе, образуя поверхностный комплекс, который устойчив только в определенной области потенциалов.
В 50—60-х годах на кафедре С. А. Балезина была проведена серия работ по изучению защиты металлов от коррозии в азотной, фосфорной и различных органических кислотах. С. А. Балезин, Г. С. Парфенов и И. В. Никольский изучили кинетику растворения железа в азотной кислоте [73, 75]. Они показали линейную зависимость скорости коррозии железа в кислоте от ее активности в области концентраций до 6,8 моль/л.
При более высоких концентрациях HNO3 скорость растворения железа падает и наступает самопроизвольное пассивирование. При концентрации раствора 13 моль/л и более появляется мгновенное пассивирующее действие азотной кислоты на железо. Скорость растворения железа в азотной кислоте с повышением температуры на 10° возрастает в 1,1 —1,2 раза. Она растет и с увеличением интенсивности перемешивания раствора азотной кислоты.
При растворении углеродистых сталей в азотной кислоте, так же как и в серной и соляной, восстанавливаются ионы водорода. Однако образовавшийся водород восстанавливает азотную кислоту до азотистой, затем азотистую до оксида азота (II) и полностью затрачивается на восстановление азотной кислоты. При добавлении тиомочевины в раствор азотной кислоты процесс восстановления последней затрудняется, так как тиомочевина разрушает азотистую кислоту: CSX (NH2)2 + 2HNO2 = СO2 + H2S + 2N2 + 2H2O.
Установлено, что содержание углерода в стали практически не влияет на скорость ее коррозии в растворе 0,5 моль/л азотной кислоты. Среди испытанных С. А. Балезиным замедлителей коррозии стали в азотной кислоте наибольшим тормозящим действием обладают перманганат и хромат калия, галоид-ионы, неорганические соединения серы и тиомочевина. Из данных электрохимических измерений следует, что хромат и перманганат калия сдвигают начальный потенциал железа в положительную сторону на 942 мВ (перманганат) и 1412 мВ (хромат), т. е. эти замедлители действуют как пассиваторы.
Замедляющее действие галоид-ионов увеличивается в последовательности: Сl- , Br-, I-. Начальный потенциал железа в азотной кислоте, содержащей хлорид, бромид или иодид калия, смещен в отрицательную сторону, что свидетельствует о торможении катодных процессов.
Почти одинаковое тормозящее действие оказывает сульфид, сульфит и тиосульфат натрия. Наибольший замедляющий эффект они проявляют при концентрации их 0,5—1 ммоль/л.
Очень велико замедляющее действие тиомочевины. Практически полное прекращение растворения железа наблюдается при концентрации HNО3 1 моль/л в присутствии 10 ммоль/л этого замедлителя. 50 ммоль/л тиомочевины почти полностью тормозят растворение железа даже в пятимолярном растворе HNO3. Однако испытания, проведенные после травления с добавкой тиомочевины, показали, что механические свойства железа и стали при этом значительно ухудшаются в результате наводороживания.
С. А. Балезин и Г. С. Парфенов исследовали также процесс растворения меди в азотной кислоте в присутствии ингибиторов [72]. Из опытных данных следует, что скорость растворения меди по мере увеличения концентрации кислоты значительно возрастает. Это обусловливается тем, что с повышением концентрации азотной кислоты усиливаются ее окислительные свойства. Явление пассивирования, характерное для железа, в случае с медью не наблюдается.
Скорость растворения меди в азотной кислоте при температуре выше 30 °С начинает сильно расти, а при перемешивании кислоты резко падает. Авторы объясняют это тем, что молекулы азотной кислоты при длительном контакте с поверхностью металла восстанавливаются, образуя следы азотистой кислоты, которая и ускоряет растворение меди. Незначительные количества азотистой кислоты, образующиеся в перемешиваемом растворе, не могут длительно контактировать с одними и теми же участками меди, поэтому азотистая кислота не проявляет автокаталитических свойств. Исследования показали, что изменения потенциала меди в азотной кислоте зависят главным образом от количества содержащейся в ней азотистой кислоты: небольшое ее количество снижает потенциал меди на почти постоянную величину — 700 мВ. Из неорганических серосодержащих соединений наибольшее тормозящее действие на процесс растворения меди оказывает тиосульфат натрия, из азотистых соединений — мочевина. Анализ поляризационных кривых показал, что мочевина в основном действует на катодный процесс. Тиомочевина значительно тормозит реакцию растворения меди благодаря разрушению азотистой кислоты.
Эффективными ингибиторами растворения меди в азотной кислоте являются сульфат гидразина и фенилгидразин, причем сульфат гидразина эффективен даже в восьмимолярном растворе азотной кислоты. Действие производных гидразина также связано с разложением азотной кислоты. Из окислителей (пероксид водорода, перманганат калия и хлорат калия) последийй в азотнокислых растворах обладает наибольшим защитным действием. Хлорат калия влияет на электродные процессы подобно мочевине.
В середине 60-х годов В. А. Карпов, аспирант С. А. Балезина, изучил влияние окислителей на защитное действие некоторых ингибиторов (йодида калия, пропаргилового спирта, БА-6) в кислой среде [259, 288, 290]. Влияние природы окислителя на защитное действие ингибиторов особенно ярко проявляется в случае растворения железа в 10-молярном растворе соляной кислоты в присутствии БА-6 и деполяризаторов — нитробензола и ионов трехвалентного железа. Если нитробензол практически не ослабляет защитного действия ингибитора, то ионы Fe3+ снижают его в десятки раз.
В ходе исследований был установлен и факт уменьшения степени влияния окислителя на защитное действие ингибитора с ростом концентрации кислоты.
С. А. Балезин, Л. В. Бабич и В. Б. Ратинов выявили зависимость между составом азотированного слоя на стали и его химической устойчивостью в кислых средах [65, 85]. Оказалось, что химическая устойчивость стали в кислоте определяется не концентрацией азота в поверхностном слое, а глубиной его проникновения. В разбавленных водных растворах серной кислоты азотированный слой склонен к местной коррозии, которая проявляется в виде язв, пятен и линейноизбирательного разрушения у границ полифазного контакта (в качестве третьей фазы применялись парафин и вазелин). С целью приближения лабораторных опытов к реальным условиям водные растворы были насыщены углекислым и сернистым газами. Полученные результаты показали, что агрессивность 0,25 моль/л серной кислоты десятикратно превышает агрессивность азотной, муравьиной и уксусной кислот той же концентрации. При повышении концентрации H2SO4 увеличивается скорость растворения, изменяется характер коррозии, она становится равномерной.
Исследованные замедлители коррозии азотированной стали в различной степени замедляют и изменяют характер ее растворения в серной кислоте; пиридин, моноэтаноламин, хинолин и 1-диэтиламино-5-аминопентан делают это сравнительно слабо, но зато способствуют более равномерному растворению азотированного слоя. Оптимальная концентрация в серной кислоте KCI, KBr и KI сильно снижает общую скорость растворения стали, не предохраняя, однако, азотированный слой от местной коррозии. Как и для неазотировапных сталей, защитное действие галоидных ионов возрастает в последовательности Сl- , Br-, I-. Смеси изученных галоидных ионов и азотсодержащих замедлителей коррозии действуют значительно эффективнее, чем каждый из них в отдельности. При этом смеси уменьшают не только скорость растворения азотированной стали, но и глубину коррозионных язв, делая процесс коррозии более равномерным.
Были найдены чрезвычайно эффективные замедлители коррозии азотированной стали в серной кислоте: бромид и иодид тетрафенилфосфония.
Изучение процесса разрушения стали в растворах фосфорной кислоты различной концентрации, проведенное С. А. Балезиным совместно с Е. С. Ивановым и Т. П. Князевой, показало, что с наибольшей скоростью металл разрушается в пятимолярном растворе фосфорной кислоты, причем в интервале температур от 20 до 100 °С растворение стали протекает только в кинетической области [358, 359, 407]. Для защиты стали-3 в растворе (5 моль/л) фосфорной кислоты эффективным оказался катапин «К», тормозящий как катодный, так и анодный процесс.
Большие практические результаты С. А. Балезин и группа сотрудников получили в ходе изучения защитного действия смесей ингибиторов. Оно во многом напоминает действие смесей катализаторов: некоторые закономерности каталитических процессов распространяются и на тормозящее действие ингибиторов. Это сходство становится более понятным, если процессы ингибирования рассматривать как один из случаев отрицательного катализа.
В этой связи С. А. Балезин, И. Н. Путилова и В. П. Баранник использовали терминологию, применяемую при изучении смешанных катализаторов. Они показали, что торможение коррозии смесью алкалоидов — наркотина и морфина — слагается из тормозящего действия указанных веществ. Это простое сложение ингибирующего эффекта было названо аддитивностью. Причина аддитивности защитного действия веществ, сходных по химическому составу, объясняется тем, что такие вещества образуют на поверхности металла защитную пленку, имеющую такое же соотношение молекул ингибиторов, как и в растворе кислоты.
При изучении ингибиторного эффекта смесей ингибиторов оказалось, что он редко бывает суммарным. Чаще наблюдается взаимное усиление или взаимное ослабление тормозящего действия. Если защитный эффект смеси веществ А и В больше аддитивного, то такой эффект называется синергетическим. В случае снижения эффекта защитного действия смеси (по сравнению с аддитивным) его характеризуют как взаимное ослабление или антагонизм. Примером проявления синергетического эффекта служит защитное действие смеси уротропина с иодидом калия. Оба этих вещества являются ингибиторами коррозии стали в серной и соляной кислотах. Защитное действие уротропина относительно невелико. Иодид калия — более эффективный ингибитор кислотной коррозии, однако высокого ингибиторного эффекта можно достичь лишь при его значительной концентрации в растворе. Исследование совместного действия уротропина и иодида калия на скорость растворения стали-20 в серной кислоте (18—100°) показало, что защитное действие смеси 1 % уротропина и 1 % иодида калия в несколько раз выше, чем у промышленных ингибиторов ПБ-5 и ЧМ. Особенно эффективна эта смесь при температуре раствора 60—100°С.
Резкое взаимное усиление защитного действия в соляной кислоте наблюдается у таких смесей, как тттодигликоль и ацетальдегид, хинолин и тиодигликоль.
При травлении и химической очистке металлов кислотами большое значение имеет защита металла при высокой температуре. Поэтому технически важной задачей является разработка высокотемпературных ингибиторов и их смесей. С. А. Балезии, исследуя ингибиторы аминного ряда, установил, что температурный максимум их защитного действия может быть сдвинут в сторону более высоких температур при замене некоторых углеводородных радикалов в молекулах ингибиторов. Увеличение ингибиторного эффекта с ростом температуры обусловлено, по С. А. Балезину, тем, что при высоких температурах физическая адсорбция переходит в химическую. Дальнейшее снижение ингибиторного эффекта при повышении температуры С. А. Балезин связывает с частичной десорбцией ингибитора.
Большой интерес для теории и практики представляют работы С. А. Балезина и его сотрудников, связанные с изучением температурного максимума ингибиторного эффекта смеси, состоящей из двух ингибиторов с различными температурными максимумами. В ходе эксперимента было установлено, что этот максимум приближается к более высокотемпературному. Если же температурные максимумы для двух веществ одинаковы, то при их смешении температурный максимум ингибиторного эффекта остается без изменений.
Используя результаты этих работ, Н. И. Подобаев и С. А. Балезин добавками уротропина к отечественным ингибиторам кислотной коррозии ПБ-5, И-I-А, катапину и БА-6 сумели резко повысить их защитное действие при 100° в 16%-ной соляной кислоте. Иначе говоря, температурный максимум защитного действия этих ингибиторов был смещен в сторону более высоких температур. Так, смесь И-I-A с уротропином оказалась эффективной и при 130°.
Большая работа со смесями ингибиторов была далее осуществлена на кафедре С. А. Балезина в связи с разработкой средств защиты от коррозии теплоэнергетического оборудования при его химической очистке. В течение 20 лет велись совместные работы кафедры и предприятий, осуществляющих химическую очистку в теплоэнергетике (завода «Котлоочистка» и «Востокэнергокотлоочистка»). В результате этих работ были разработаны и внедрены моющие ингибированные растворы для снятия как предпусковых, так и эксплуатационных отложений. На кафедре этими работами руководили С. А. Балезин, Ф. Г. Гликина и Н. И. Подобаев. В работе участвовали сотрудники В. И. Родионова, И. Г. Ключников, Н. И. Шадрина, И. И. Супоницкая, Н. А. Бычкова, Е. С. Булавина, И. С. Солодкин, Н. Л. Харьковская и аспиранты В. А. Карпов, И. С. Михальченко и Р. В. Фролова.
Аспирант Р. В. Фролова [208, 213, 217, 263, 299] изучила химическую роль гидразина, применяемого при предпусковых кислотных промывках. Были выработаны соответствующие практические рекомендации. Присадка гидразина к обескислороженным растворам и при естественной аэрации в 2—4 раза уменьшала коррозионные потери. Ингибирующее действие гидразина исследователи объяснили связыванием кислоты гидразином в гидразопиевые соли.
В растворах кислот, насыщаемых кислородом, процесс коррозии стали зависит и от образующихся продуктов коррозии. При малых концентрациях гидразина количество магнетита Fe3O4 в продуктах коррозии оказывается недостаточным для образования слоя, защищающего поверхность металла. Наоборот, за счет увеличения неоднородности поверхности и рыхлости поверхностного слоя наблюдается усиление коррозии. При концентрации гидразина выше 70 мг/л основным продуктом коррозии является магнетит, в результате скорость коррозии стали уменьшается.
Лучшее качество очистки поверхности с минимальными потерями металла достигается постоянством pH раствора и концентрации гидразина, поддерживаемым в процессе реакции. Предложенные оптимальные условия гидразинно-кислотной очистки внедрены в практику предпусковых промывок котлов.
Ингибировались растворы как минеральных, так и органических кислот. С. А. Балезин совместно с Ф. Б. Гликиной, И. И. Супоницкой и Н. И. Шадриной, работая со смесью ПБ-5 и уротропина, доказали эффективность ее для защиты напряженной стали от коррозии в 4% -ном растворе соляной кислоты при высоких температурах, а также от неравномерной коррозии под действием ионов трехвалентного железа, когда сталь полностью сохраняла свою механическую прочность [383, 386, 387]. Смеси ПБ-5 с уротропином, И-I-А с уротропином, катапина «К» с уротропином, БА-6 с катапином «К» оказались более эффективны при защите стали-20 в соляной кислоте и ее смесях с серной кислотой при 80°, чем отдельно взятые ингибиторы. Было показано, что эти смеси хорошо защищают как металл с зачищенной поверхностью, так и металл под окалиной, не мешая удалению отложений. Особенно эффективно действие добавки уротропина к И-I-А и катапину «К» в условиях циркуляции раствора. В присутствии уротропина максимум ингибиторного действия И-I-А и катапина «К» в циркулирующих растворах 4% -ной соляной кислоты смещается в область более высоких температур. Очень важно для химической очистки, что эти ингибиторы, уменьшая скорость коррозии стали, не замедляют растворение высокотемпературной окалины не только с углеродистых сталей, но и с низколегированных.
Известно, что в котельном оборудовании имеются участки из аустенитных сталей. Для их очистки нельзя использовать соляную кислоту. Поэтому в качестве моющих применяются растворы органических кислот.
На кафедре, руководимой С. А. Балезиным, впервые в СССР были разработаны и внедрены универсальные смеси ингибиторов для защиты от коррозии котельных сталей при химической очистке их растворами лимонной, уксусной, адипиновой, яблочной, муравьиной и других органических кислот при температуре 170 °С. Это, как правило, смеси азот- и серосодержащих ингибиторов,. Эти ингибиторы слабо влияют на скорость растворения минеральных отложений на металле и вместе с тем сильно тормозят растворение самого металла. Поэтому на его растворение расходуется незначительная часть кислоты.
С. А. Балезиным, Ф. Б. Гликиной и В. А. Карповым [284, 364] исследована коррозия и защита стали-10 в циркулирующих при 100°С растворах адипиновой и фталевой кислот, применяемых для очистки оборудования в теплоэнергетике. Оказалось, что в разбавленных растворах адипиновая кислота в основном ведет себя по отношению к железу как электролит, а в более концентрированных растворах — как комплексообразующий агент [292]. Скорость анодного растворения железа зависит не только от кислотности раствора, но и от природы и концентрации анионов. Для растворов этих кислот исследователи рекомендовали высокоэффективные смеси ингибиторов.
В теплоэнергетике для снятия отложений с поверхности металла широко используются также комплексны и композиции на их основе. В этой связи С. А. Балезин, Ф. Б. Гликина и И. С. Михальченко [322, 324, 325, 353, 362, 390] провели серию исследований коррозии стали в растворах наиболее распространенных комплексонов: нитрилотриуксусной кислоты (НТА), диэтилентриаминпентауксусной кислоты (ДТПА), гексаметилендиаминтетрауксусной кислоты (ГМДТА), 2-оксиэтилиминоуксусной кислоты (2-ОЭИДА) и этилендиаминтетрауксусной кислоты (ЭДТА).
Показано, что комплексны выполняют две функции: кислот и комплексообразующих реагентов. С железом они образуют хорошо растворимые комплексные соединения, и, чем прочнее эти комплексные соединения, тем легче ионизируется металл, т. е. скорость коррозии увеличивается.
Была найдена зависимость скорости коррозии (р) от констант диссоциации комплексонов и констант нестойкости комплексонатов железа:
? = а [рКнесг — (рКдис I, + рКдис II)] + b,
где а и b не зависят от условий опыта; рКнесг — рК нестойкости наиболее прочных в этих условиях комплексонатов железа; рКдис I и рКдис II — рК диссоциации комплексонов по первой и второй ступеням.
В условиях опыта (pH = 2 ? 4) комплексоны диссоциируют в основном по первой и второй ступеням, отщепление же следующих протонов происходит при более высоких значениях pH. Это уравнение выполняется в обескислороженных растворах, в присутствии же кислорода имеются отклонения. Полученное уравнение позволяет предсказать коррозионную активность растворов различных комплексонов.
В ходе экспериментов проводилось сравнение применяемых при химических очистках комплексообразующих веществ по агрессивности к котельным сталям, а также по эффективности удаления окалины и ржавчины с поверхности металлов. Многие комплексоны давно широко использовались в химической очистке котельного оборудования, но часто без ингибиторов, что приводило к нарушению поверхности металла и непроизводительному расходу дорогостоящих реагентов. Авторами указанных работ был сделан вывод о необходимости ингибирования всех комплексообразующих растворов. Для защиты стали-10 от коррозии в растворах трилона «Б» и композиций на его основе (t = 100°) были предложены смеси 0,03% тиомочевины +0,1% катапина, 0,03% тиомочевины +0,05% И-I-А, 0,03% мочевины +0,1% И-I-В и 0,03% каптакса +0,1% катапина, которые обладают высоким защитным действием.
На основании электрохимических измерений был сделан вывод о хемосорбционном механизме действия этих смесей ингибиторов. Исследователи высказали предположение о том. что анодный процесс в растворах трилона «Б» складывается из двух параллельно протекающих реакций: на участках, запятых адсорбированным реагентом, — с участием комплексона, на свободных участках — с участием ОН- и Н+-ионов. Найдено, что адсорбция трилона «Б» на железе зависит от потенциала. Полученные результаты позволили предложить схему суммарного электродного процесса.
В последние годы большая часть эксплуатационных химических очисток барабанных парогенераторов проводится при повышенных давлениях 5 • 105—8 • 105 Па и температуре 150—170°. В этом случае для растворения оксидов железа и меди используются в основном композиции трилона «Б» с органическими кислотами (лимонной, малеиновой, фталевой и др.). Поэтому очень важно обеспечить надежную защиту металла от коррозии в таких растворах.
С этой целью С. А. Балезин, Н. И. Шадрина, Ф. Б. Гликина, Н. А. Бычкова и Н. Л. Харьковская провели исследование коррозии стали-20 в композициях, содержащих 1,0% трилона «Б» и но 1,0% лимонной, фталевой или малеиновой кислот. Была изучена возможность защиты металлов в растворах этих композиций в диапазоне температур 100—170° [386]. При таких условиях наблюдалась высокая коррозионная активность моющих композиций. Было показано, что достаточно эффективно защищают металл смеси каптакса или производных тиомочевины с ингибиторами кислотного травления катапином, И-I-A (И-I-В) и пр. Все разработанные смеси ингибиторов широко используются в настоящее время при проведении химических очисток теплоэнергетического оборудования.
С целью интенсификации кислотной очистки поверхности металлических изделий от окалины С. А. Балезин и С. Д. Бесков предложили струйный метод. По их расчетам, этот метод позволяет сократить продолжительность очистки металлических изделий в 10— 15 раз [151]. С повышением температуры травильного раствора эффективность снятия ржавчины и окалины возрастает. Больше того, температурный коэффициент при струйном травлении примерно в 2 раза выше, чем при травлении в ваннах. При струйном травлении наводороживание металла значительно ниже, чем при травлении в ваннах.
Изучая струйное травление латунных изделий, С. А. Балезин проверил около 20 рецептур различных растворов, состоящих из смесей соляной и серной или соляной и азотной кислот, а также серной или соляной кислоты с добавками к ним нитрита натрия или нитрита кальция, дихромата калия или хромового ангидрида или же ингибитора ПБ-5. Было показано, что наиболее чистая поверхность достигается при травлении изделий в растворе, содержащем 10% серной и 5% соляной кислоты. Эффективно идет процесс травления в 10%-ном растворе серной кислоты, если к нему добавить 3% нитрита натрия. Представляют интерес травильные растворы 10%-ной серной кислоты с добавлением к ним 5% нитрита натрия или 3% нитрита кальция. Эти растворы не только обеспечивают эффективное травление латуни, но и позволяют хорошо подготовить поверхность для последующей пассивации.
Как известно, наводороживание, наблюдаемое при кислотном травлении металла, резко ухудшает его механические свойства. Неудивительно, что в работах С. А. Балезина и его сотрудников вопросу диффузии водорода в металлы при травлении уделено большое внимание. Исследования процессов наводороживание начались на кафедре в 50-х годах и были продолжены в течение всех последующих лет. В последний период своей деятельности С. А. Балезин особое внимание уделял роли ингибиторов в сохранении механических свойств металла при его кислотном травлении. Процесс диффузии водорода через металл исследовался с помощью прибора, позволяющего установить соотношение между количеством водорода, образующегося на границе металла с кислотой, и количеством этого газа, выделяющегося на противоположной стороне металлической пластинки. Данный метод давал возможность определить зависимости скорости проникновения водорода через металл от температуры и концентрации кислоты, присадок, вводимых в кислоту, а также от примесей, содержащихся в металле. Действие ингибиторов на процесс диффузии водорода через сталь при травлении ее кислотами до работ С. А. Балезина было исследовано мало. Количество водорода, поглощенного металлом при травлении в кислотах, определялось методом вакуум-нагрева. В исследованиях учитывался водород, находившийся в металле до травления. Участки выделения водорода обнаруживались с помощью микрокиносъемки.
С. А. Балезин совместно с Д. Я. Соловей [41, 45], И. В. Никольским [121, 135, 166], Н. И. Нарушевич [163, 242, 247] и Е. П. Сидориным [305, 310, 312] исследовал влияние на процесс диффузии водорода многих факторов, в том числе содержания в стали углерода и легирующих элементов, концентрации кислоты и ингибиторов в рабочих средах, анионного состава и перемешивания электролита и, наконец, температуры и давления. Было показано, что как растворение стали, так и диффузия водорода через сталь ускоряются с повышением концентрации кислоты и ростом содержания углерода в стали до 0,9%, а при дальнейшем увеличении количества углерода в стали оба процесса замедляются. Авторы объясняют это различием в структурах доэвтектоидных и эвтектоидных сталей. Доля продиффундировавшего через металл водорода, равнозначная для всех концентраций серной кислоты и для всех марок стали, составляет примерно 8—10% от всего образовавшегося водорода.
С. А. Балезин назвал отношение количества диффузионного водорода к количеству образовавшегося в процессе растворения металла в кислоте диффузионным коэффициентом водорода (Q). Этот коэффициент является показателем зависимости скорости диффузии водорода от скорости растворения стали в кислотах. С увеличением концентрации серной кислоты скорость диффузии водорода возрастает линейно для всех марок стали, причем наблюдается прямая зависимость между скоростью растворения стали и скоростью диффузии через нее водорода. При растворении же сталей в соляной кислоте с повышением концентрации кислоты скорость диффузии водорода через сталь снижается. Соответственно резко уменьшается и коэффициент Q: при растворении стали в одномоляриом растворе соляной кислоты через сталь диффундирует 1/5 образовавшегося водорода, а в пятимолярном растворе соляной кислоты — только 1/50. Различие в скорости диффузии водорода через стали при растворении их в серной и соляной кислотах исследователи объясняли тем, что анионы SO2-4 и Сl- на поверхности протравленного металла ведут себя неодинаково.
Выяснилось, что характер влияния содержания углерода па скорость растворения сталей и скорость диффузии через них водорода одинаков для всех исследованных растворов серной и соляной кислот (как без ингибиторов, так и с ингибиторами).
Изучение наводороживания стали в растворах угольной, муравьиной, уксусной кислот и в их смесях показало, что каждая из кислот в отдельности вызывает незначительное наводороживание. При совместном же их воздействии наводороживание значительно усиливается, причем непропорционально увеличению скорости коррозии. Резкое снижение скорости коррозии и последующее интенсивное наводороживание стали происходят в системе, состоящей из муравьиной и уксусной кислот. Это объясняется каталитическим разложением муравьиной кислоты па железном электроде в присутствии уксусной кислоты.
Большой практический интерес представляло изучение возникновения водородной хрупкости стальной проволоки, помещенной в растворы химически чистой ортофосфорной кислоты без добавок и с добавками, применяемыми при фосфатировании стальных изделий. Оказалось, что с увеличением времени травления и повышением температуры хрупкость проволоки повышается. С увеличением концентрации фосфорной кислоты скорость коррозии стали монотонно возрастает, а хрупкость по мере увеличения концентрации до 3,3 моль/л усиливается, но затем понижается; 10 моль/л фосфорная кислота не делает металл хрупким. Также не приводит к изменению его хрупкости и добавление к фосфорной кислоте оксида цинка и нитрита натрия. Зато фторид натрия (0,02 г/л) увеличивает хрупкость сталей.
Результаты проведенных исследований позволили разработать рекомендации по защите стали от наводороживания при ее фосфатировании.
Большое место в работе Балезина и его сотрудников было уделено проблеме влияния перемешивания раствора кислоты на скорость проникновения водорода через железо. Понимание механизма этого процесса было особенно необходимо в связи с введением струйного травления стальных изделий. В неперемешиваемом растворе кислоты проницаемость водорода через малоуглеродистую сталь выше, чем при травлении образца в перемешиваемой кислоте. Вместе с тем перемешивание, мало отражаясь на скорости коррозии, уменьшает скорость проникновения водорода через железо вследствие увеличения скорости водородной десорбции.
Исследуя процессы, связанные с диффузией водорода, С. А. Балезин пришел к заключению, что водород при кислотном травлении диффундирует через металл по границам зерен. Эти наблюдения вполне согласуются с данными многих авторов, изучавших
диффузию водорода при электролитическом насыщении. Изучение влияния содержания легирующих присадок (Cr, Ni, Cu) на наводороживаьше стали при химическом травлении в 2,5 моль/л серной кислоты показало, что наибольшей устойчивостью к проникновению водорода обладает сталь, легированная одновременно хромом, никелем и медью. Исследование влияния анионного состава электролитов в кислых средах (pH = 5) на абсорбцию водорода при катодной поляризации стали позволило расположить анионы в ряд по степени их влияния на этот процесс:
НСОО-<СН3СОО-<(СО32- и HCO3-)<(S2- и HS-).
Приведенный ряд практически отражает способность анионов к адсорбции на металлической поверхности.
С. А. Балезин и И. В. Никольский впервые показали, что при травлении стали в азотной кислоте появляется водородная хрупкость, так же как и при травлении в других кислотах. (Ранее некоторые исследователи считали это невозможным.) При разбавлении азотной кислоты в связи с ослаблением ее окислительных свойств первоначально образовавшийся при взаимодействии железа с кислотой водород окисляется не полностью. Создается некоторая концентрация водородных атомов, достаточная для диффузии внутрь образцов. Поэтому наибольшую хрупкость малоуглеродистая сталь приобретает при травлении в азотной кислоте небольших концентраций (от 0,3 до 0,8 моль/л).
Как известно, наводороживание стали снижает прочность изделий. В этой связи С. А. Балезин совместно с И. В. Никольским, Е. П. Сидориным, Е. С. Ивановым и Н. В. Кардаш провел серию работ по изучению влияния ингибиторов коррозии на водородную хрупкость [344, 347, 388]. Оказалось, что в присутствии некоторых ингибиторов коррозии скорость диффузии водорода уменьшается. Так, тиодигликоль тормозит примерно в одинаковой степени и скорость растворения стали, и скорость диффузии водорода через сталь. Травильная присадка ЧМ к серной кислоте также в равной мере защищает металл от растворения и от диффузии водорода. Такие же вещества, как пиридин и а-пиколин в концентрации 2 ммоль/л, мало защищают сталь от растворения и стимулируют диффузию водорода через металл.
Вместе с тем исследователям удалось показать, что некоторые ингибиторы, слабо влияющие на скорость растворения металлов, могут энергично тормозить диффузию водорода. Например, малоактивный замедлитель коррозии диэтиланилип существенно защищает металл от проникновения в него водорода.
Полученные результаты привели С. А. Балезина и его сотрудников к выводу о том, что нельзя оценивать эффективность присадок кислотного травления металлов только по степени тормошения растворения металла: для этого следует сопоставлять влияние ингибитора как га скорость коррозии металла, так и на диффузию водорода в металл.
Созданные школой С. А. Балезина ингибиторы оказались эффективными в борьбе и с наводороживанием металлов. Так, в присутствии ингибиторов ПБ-5 (в соляной кислоте) и ЧМ (в серной кислоте) практически не возникает водородной хрупкости металла. Позднее была показана высокая эффективность ингибиторов БА-6 при травлении углеродистых сталей в соляной кислоте. При концентрации соляной кислоты от 1 моль/л до 7 моль/л ингибитор БА-6 при температуре 20 °С практически полностью подавляет наводороживание и эффективно препятствует наводороживанию стали при высоких температурах.
С. А. Балезин исследовал влияние трибензилтригидросиммтриазина (ТТТ) на пластичность стали-10 при травлении в соляной кислоте (4 моль/л). В чистой соляной кислоте за первые 30 мин травления сталь теряет до 50% исходной пластичности, а за 1 ч — 65—70%, и в дальнейшем пластичность практически не меняется. Падение пластичности сопровождается ростом содержания водорода в поверхностном слое, которое за 1 ч достигает предела. При этом скорость коррозии в течение всего времени травления остается постоянной. Таким образом показано, что потеря пластичности стали в течение первого часа при травлении без ингибиторов обусловлена абсорбцией водорода металлом.
В кислоте с добавкой ТТТ сталь в течение первых 15 мин травления сохраняет исходную пластичность, а в дальнейшем последняя даже увеличивается на 5—7%. Количество абсорбированного водорода к концу часа достигает предела, который в 1,5—2 раза ниже, чем без ингибитора. Эффект увеличения пластических свойств металла в присутствии ингибиторов имеет большое практическое значение.
Интересные результаты были получены С. А. Балезиным и его сотрудниками при изучении влияния четвертичных фосфониевых солей на механические характеристики и наводороживание высокопрочных сталей ХГСА в процессе ее травления. Эти ингибиторы эффективно (на 95—98%) замедляют растворение стали в серной кислоте. Кислота снижает предел кратковременной прочности этой стали и в 2,5 раза уменьшает ее относительное сужение. Введенные в кислоту четвертичные фосфониевые соли, особенно трифениламинофенилфосфонийиодид, улучшают эти механические характеристики стали не только по сравнению с состоянием после травления стали в чистой кислоте, но и в сравнении с исходными характеристиками металла.
Этот несколько неожиданно полученный результат заслуживал особого внимания. Описанный выше эффект не может быть объяснен снижением наводороживания — ведь после травления металла в ингибированной кислоте содержание растворенного в нем водорода в 4—5 раз выше, чем в исходном состоянии. По мнению С. А. Балезина, причиной повышения прочностных характеристик металла является выглаживание поверхности стали за счет растворения участков с большей поверхностной энергией, т. е. за счет первоначального удаления концентраторов напряжений. Улучшение качества поверхности, ее выглаживание после травления с ингибиторами иногда наблюдается даже визуально. Согласно классификации, предложенной С. А. Балезиным, фосфониевые соли следует отнести к группе ингибиторов, в присутствии которых не изменяются механические характеристики стали.
Среди веществ, содержащихся в травильных ваннах и контактирующих с металлами в условиях эксплуатации изделий, часто присутствуют стимуляторы наводороживания. В связи с этим С. А. Балезиным совместно с В. В. Романовым и И. В. Никольским изучалось влияние стимуляторов наводороживаиия, уменьшающих длительную прочность железа-армко в серной кислоте.
В качестве стимуляторов наводороживаиия были исследованы сульфид и тиосульфат натрия (1 г/т). На основании экпериментальных данных сделано предположение об отсутствии прямой связи между изменением пластичности металла вследствие наводороживания и потерей прочности по механизму водородного охрупчивания.
В растворе сероводорода с увеличением времени травления хрупкость образцов значительно возрастает, особенно в течение первого часа. При более длительном травлении хрупкость уменьшается, пластичность металла постепенно восстанавливается, что объясняется снижением концентрации сероводорода в растворе за счет его окисления до серы и образования труднорастворимого сульфида железа. При увеличении концентрации сероводорода растет и хрупкость металла.
Стимулирование наводороживаниа сульфид-ионами может быть объяснено снижением перенапряжения водорода.
Сероводород содержится во многих технологических средах. Поэтому представлялось важным найти эффективные ингибиторы, тормозящие паводороживание сталей в кислотных растворах сероводорода. Эффективными оказались ингибиторы катапип «Л» и АНП-2 — смесь солянокислых солей алифатических аминов со средним числом атомов углерода в цепи, равным 15.
В ходе работы было исследовано и известное явление усиления наводороживания стали в сероводородных средах за счет присутствия органических кислот.
В заключение следует сказать, что работы по кислотному травлению металлов, по химическим очисткам теплоэнергетического оборудования, выполненные под руководством С. А. Балезина в МГПИ им. В. И. Ленина, широко используются не только в нашей стране, но и за рубежом. И сегодня они являются действующим руководством как для специалистов, изучающих теорию кислотной коррозии, так и для практиков, реализующих эти процессы в промышленности.
За большую практическую ценность эти работы неоднократно отмечены медалями ВДНХ.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОК