2.1. Статическая Вселенная Эйнштейна

We use cookies. Read the Privacy and Cookie Policy

Итак, с помощью ОТО Эйнштейну удалось объяснить ряд известных астрономических фактов: например, прецессию перигелия Меркурия, которую нельзя было объяснить в рамках ньютоновской механики. Кроме того, он сделал предсказание об искривлении лучей света в гравитационном поле массивных тел, которое было блестяще подтверждено наблюдениями положений звезд во время полного солнечного затмения 1919 г., которые проводила экспедиция Артура Эддингтона.

Но Эйнштейн не ограничился применением своей теории к эффектам на масштабах Солнечной системы. Впервые в истории науки он попытался применить законы физики ко всей Вселенной сразу. Хотя статья, написанная им в 1917 г., была посвящена применению ко Вселенной уравнений ОТО, в ней в качестве иллюстрации рассматривается также и ньютоновская гравитация. При этом Эйнштейн рассматривал Вселенную, равномерно заполненную материей.

Первый же результат, полученный Эйнштейном, состоял в том, что под действием взаимного притяжения материя, заполняющая Вселенную, должна собраться вместе. Но так как Вселенная, рассмотренная Эйнштейном, была бесконечной, это выражалось не в уменьшении заполненной материей части, а в увеличении плотности в каждой точке Вселенной. Поскольку Эйнштейн, как и любой ученый начала XX в., был уверен в том, что Вселенная статична, т. е. не меняется со временем, ему нужна было найти силу отталкивания, которая компенсировала бы силу гравитационного притяжения.

Эту силу Эйнштейн ввел искусственно, добавив в полученные им уравнения ОТО дополнительное слагаемое, содержащее космологическую постоянную. Сам Эйнштейн обозначил ее ?, а сейчас ее принято обозначать ?, поэтому соответствующее слагаемое в уравнении Эйнштейна называется лямбда-членом. Космологическая постоянная была предложена Эйнштейном, не опираясь на эмпирические факты, только как следствие гипотезы о том, что Вселенная должна быть статической. Космологическая постоянная обеспечивала вдобавок к ньютоновскому притяжению некую силу отталкивания между любыми телами во Вселенной. При определенной плотности материи эти силы взаимно компенсировались, что и обеспечивало статичность Вселенной. Гипотеза статической Вселенной была отброшена уже через несколько лет, но она важна тем, что дала начало новой науке – космологии.

Однако очень быстро было показано, что статическая Вселенная Эйнштейна является неустойчивой. Области с большей плотностью начинают притягивать к себе окружающую материю, тем самым еще более увеличивая свою плотность, а области с пониженной плотностью становились еще более разреженными. Это – одно из проявлений так называемой гравитационной неустойчивости. Кроме того, вся статическая Вселенная в целом тоже неустойчива. Если ее размеры чуть увеличатся, то силы отталкивания станут сильнее сил притяжения и Вселенная начнет расширяться до бесконечных размеров. Если размеры чуть уменьшатся, то притяжение станет сильнее отталкивания и Вселенная начнет сжиматься, в конце концов коллапсируя в точку. Это обстоятельство привело к тому, что Эйнштейн потерял интерес к этому решению.