Особенности механизма комплексообразования. Комплексоны и биоэлементы

We use cookies. Read the Privacy and Cookie Policy

Антидотное действие комплексонов зависит от прочности образующегося металлокомплекса, что в свою очередь определяется величиной константы устойчивости (или равновесия) соответствующих реакций хелатообразования. Исходя из этой величины, можно установить степень химического сродства отдельных металлов к комплексонам, а значит, и предвидеть возможность связывания ими различных металлов. Так, по возрастающей степени устойчивости комплекса «металл-ЭДТА» металлы располагаются в таком порядке: Sr, Mg, Ca, Fe2+, Mn, Co, Zn, Cd, Pb, Cu, Hg, Ni. Отсюда следует, что, например, кальциевые соли ЭДТА являются эффективными антидотами при отравлении свинцом и кадмием, так как эти металлы вытесняют из комплексона кальций, имеющий меньшую константу устойчивости с ЭДТА. По той же причине выведение из организма стронция и магния не будет ускоряться кальциевыми солями ЭДТА, а марганца и железа — кобальтовой ее солью. В то же время надо учитывать, что эффективность комплексонов в отношении токсичных металлов зависит не только от прочности образуемого комплекса «металл-хелат» и константы вытеснения металлом кальция, но и от прочности связи извлекаемого металла с биокомплексами организма.[133]

Иногда длительное поступление в организм малых количеств ядовитых металлов приводит к фиксированию их различными внутренними органами и тканями, вследствие чего их концентрация в крови и моче существенно не повышена. И если имеется подозрение на интоксикацию, то пациенту дают один из комплексонов, что резко увеличивает выведение яда с мочой и указывает на его присутствие в организме. При этом по мере связывания антидотом свободно циркулирующего металла последний постепенно переходит из тканевых депо в плазму крови и затем через почки в мочу. Иными словами, процесс комплексообразования приводит к нарушению установившегося равновесия между ионизированным металлом плазмы и металлом, содержащимся, например, в эритроцитах, а также в печени, селезенке, костной ткани и др.

Небезынтересно в связи с этим, что некоторые комплексоны, например тетацин, используются при обследовании яиц, ранее подвергавшихся на производстве воздействию свинца. После длительного перерыва в работе диагностическим показателем наличия у них свинцового депо в организме является выведение металла с мочой (0,35 мг в сутки и более) в результате однократной инъекции комплексона.

Так как комплексоны связывают и ускоряют выведение из организма многих металлов, то по отношению к ним не остаются безучастными и биоэлементы, находящиеся в свободном состоянии (Na, К, Са и др.) или входящие в состав жизненно важных металлопротеидов. Вот почему введение в организм комплексонов не может не повлиять на течение обменных процессов и на действие ряда чужеродных веществ, поскольку их биотрансформация определяется функцией ферментов, молекулы которых включают тот или иной металл. Так, при обследовании 71 человека, соприкасавшегося во время работы со свинцом или ртутью и получавшего тетацин или унитиол с лечебной и диагностической целью, было установлено, что при длительном применении эти препараты резко увеличивают выведение из организма меди и марганца через почки. Эти данные привели к выводу о необходимости дополнительного введения названных жизненно важных микроэлементов с целью восполнения их потерь.[134] С другой стороны, эксперименты свидетельствуют, что некоторое аминополикарбоновые комплексоны (тетацин, пентацин) активируют такие металлопротеидные ферменты, как цитохромоксидаза, каталаза и др. Это связывается со способностью комплексонов изменять валентность атомов железа и других микроэлементов.[135] Между тем еще в 1956 г. было показано,[136] что животных можно защитить от смертельной дозы токсина газовой гангрены, вводя им растворы Na2ЭДТA и СаЭДТА. Оказалось, что этот микробный яд есть не что иное, как фермент лецитиназа,[137] который активируется ионами Zn2+ и Со2+. Поэтому, связывая эти ионы с помощью комплексонов, удается резко снизить действие токсина.

Вообще надо отметить широкий диапазон возможного влияния хелатообразующих соединений на различные биохимические процессы и физиологические функции. В дальнейшем мы еще сможем проиллюстрировать это примерами из области токсикологии. Теперь же, в заключение данной главы, вкратце коснемся одного аспекта практического применения комплексонов. Поскольку соли ЭДТА и других аминополикарбоновых кислот не разлагаются в организме, характеризуются большой терапевтической широтой и быстро выводятся почками, отдельные токсикологи рекомендуют применять их и для предупреждения некоторых профессиональных отравлений (например, свинцовых, марганцевых, ртутных). В производственных условиях это возможно посредством вдыхания аэрозолей или приема внутрь таблеток, содержащих антидот. Однако с учетом вероятности развития побочных явлений (нарушение функции почек, связывание кальция сыворотки крови и многих микроэлементов, изменение активности некоторых ферментов и др.) ряд авторов отрицательно относится к профилактическому применению комплексонов. В связи с этим в нескольких лабораториях проводились изыскания таких профилактических средств, которые бы при длительном повседневном применении (в том числе и непосредственно на производстве) не вызывали нежелательных сдвигов в состоянии организма и в то же время обладали выраженным защитным действием. Эти свойства выявлены у пектинов — полимерных веществ пищевого происхождения, которые построены в виде цепей со звеньями следующего строения:

Таким образом, каждое из этих звеньев включает 2 молекулы галактуроновых кислот, соединенных гидролизующимися связями. В литературе особенно подчеркивается антидотное значение их карбоксильных групп, которые способны присоединять катионы многих металлов с образованием пектинатов. Кроме того, следует иметь в виду, что пектины — коллоидные вещества с выраженными сорбционными свойствами.[138] Эти физические особенности, по-видимому, в немалой степени определяют их защитное действие при интоксикациях. Теперь уже накопилось достаточно экспериментальных данных, бесспорно свидетельствующих о профилактическом действии пектина при отравлениях тяжелыми металлами. Особенно четко такой эффект проявляется при проникновении в организм свинца, всасывание которого под влиянием пектинов резко тормозится. Для работающих в контакте с этим металлом О. Г. Архиповой и соавторами была разработана инструкция, согласно которой пектин вводится в организм в виде специально изготовленного мармелада с 5–8%-ным содержанием препарата (по 125 г ежедневно в течение 2–5,5 мес). При этом одновременно отмечалось увеличение выведения яда главным образом через желудочно-кишечный тракт. Каких-либо побочных явлений и осложнений длительный прием пектина не вызывал.[139]

Таким образом, в настоящее время можно говорить об определенных успехах экспериментальной и клинической токсикологии в изыскании и применении лекарственных средств антидотного действия, пригодных как для лечения, так и для предупреждения отравлений тиоловыми ядами. Практическое использование этих средств оказалось особенно результативным при профессиональных интоксикациях соединениями мышьяка, свинца, ртути.