Глава 23 РЕЗОНАНС

We use cookies. Read the Privacy and Cookie Policy

Глава 23

РЕЗОНАНС

§ 1. Комплексные числа и гармоническое движение

§ 2. Вынужденные колебания с торможением

§ 3. Электрический резонанс

§ 4. Резонанс в природе

§ 1. Комплексные числа и гармоническое движение

Мы снова будем говорить в этой главе о гармоническом осцилляторе, особенно об ос­цилляторе, на который действует внешняя си­ла. Для анализа этих задач нужно развить новую технику. В предыдущей главе мы ввели понятие комплексного числа, которое состоит из действительной и мнимой частей и которое можно изобразить на графике. Действительная часть числа будет изображаться абсциссой, а мнимая — ординатой. Комплексное число а можно записать в виде a=ar+iai; при такой записи индекс r отмечает действительную часть а, а индекс i — мнимую. Взглянув на фиг. 23.1, легко сообразить, что комплексное число a=x+iy можно записать и так: x+iy=rexp(iq), где r2=x2+y2=(x+iy)(x-iy)=aa * (а* — это комплексно сопряженное к а число; оно полу­чается из а изменением знака i).

Фиг. 23,1. Комплексное число, изображенное точкой на «комплек­сной плоскости».

Итак, комп­лексное число можно представить двумя спо­собами: явно выделить его действительную и мнимую части или задать его модулем rи фазо­вым углом q. Если заданы r и q, то х и у равны rcosq и rsinq, и, наоборот, исходя из числа x+iy, можно найти r=Ц(x2+y2)и угол q; tgq равен у/х (т. е. отношению мнимой и действи­тельной частей).

Чтобы применить комплексные числа к ре­шению физических задач, проделаем такой трюк. Когда мы изучали осциллятор, то имели дело с внешней силой, пропорциональной coswt. Такую силу F=F0coswt можно рас­сматривать как действительную часть комп­лексного числа F = F0exp(iwt), потому что exp(iwt)=coswt+isinwt. Такой переход удобен: ведь иметь дело с экспонентой легче, чем с косинусом. Итак, трюк состоит в том, что все относящиеся к осциллятору функции рассматриваются как действительные части каких-то комплексных функций. Найденное нами ком­плексное число F, разумеется, не настоящая сила, ибо физика не знает комплексных сил: все силы имеют только действитель­ную часть, а мнимой части взяться просто неоткуда. Тем не менее мы будем говорить «сила» F0exp(iwt), хотя надо помнить, что речь идет лишь о действительной ее части.

Рассмотрим еще один пример. Как представить косинусоидальную волну, фаза которой сдвинулась на D? Конечно, как действительную часть F0exp[i((wt-D2)]; экспоненту в этом слу­чае можно записать в виде exp[i(wt-D)]=ехр(iwt)exp(-iD). Алгебра экспонент гораздо легче алгебры синусов и косинусов; вот почему удобно использовать комплексные числа. Часто мы будем писать так:

Шляпка над буквой будет указывать, что мы имеем дело с комп­лексным числом, т. е.

Однако пора начать решать уравнения, используя комплексные числа, тогда мы увидим, как надо применять комплексные чи­сла в реальных обстоятельствах. Для начала попытаемся решить уравнение

где F — действующая на осциллятор сила, а х — его смещение. Хотя это и абсурдно, предположим, что х и F — комплексные числа. Тогда х состоит из действительной части и умноженной на i мнимой части; то же самое касается и F. Уравнение (23.2) в этом случае означает

или

Комплексные числа равны, когда равны их действительные и мнимые части; следовательно, действительная, часть х удовлет­воряет уравнению, в правой части которого стоит действительная часть силы. Оговорим с самого начала, что такое разделение действительных и мнимых частей возможно не всегда, а только в случае линейных уравнений, т. е. уравнений, содержащих х лишь в нулевой и первой степенях. Например, если бы уравне­ние содержало член lх2, то, сделав подстановку xr+ixt, мы полу­чили бы l(xr+ixi)2, и выделение действительной и мнимой час­тей привело бы нас к l2r-x2i) и 2ilxrxi. Итак, мы видим, что действительная часть уравнения содержит в этом случае член -lx2i. Мы получили совсем не то уравнение, какое собирались решать.

Попытаемся применить наш метод к уже решенной задаче о вынужденных колебаниях осциллятора, т. е. об осцилля­торе, на который действует внешняя сила. Как и раньше, мы хотим решить уравнение (23.2), но давайте начнем с уравнения

где — комплексное число. Конечно, х — тоже комп­лексное число, но запомним правило: чтобы найти интересую­щие нас величины, надо взять действительную часть х. Найдем решение (23.3), описывающее вынужденные колебания. О дру­гих решениях поговорим потом. Это решение имеет ту же час­тоту, что и внешняя (приложенная) сила. Колебание, кроме того, характеризуется амплитудой и фазой, поэтому если пред­ставить смещение числом , то модуль его скажет нам о размахе колебаний, а фаза комплексного числа — о временной задержке колебания. Воспользуемся теперь замечательным свойством экс­поненты:

Дифференцируя экспо­ненциальную функцию, мы опускаем вниз экспоненту, делая ее простым множителем. Дифференцируя еще раз, мы снова при­писываем такой же множитель, поэтому очень просто написать уравнение для : каждое дифференцирование по времени надо заменить умножением на iw. (Дифференцирование становится теперь столь же простым, как и умножение! Идея использовать экспоненциальные функции в линейных дифференциальных уравнениях почти столь же грандиозна, как изобретение лога­рифмов, которые заменили умножение сложением. Здесь дифференцирование заменяется умножением.) Таким образом, мы получаем уравнение

[Мы опустили общий множитель eiwt.]Смотрите, как все просто! Дифференциальное уравнение немедленно сводится к чисто алгебраическому; сразу же можно написать его решение

поскольку (iw)2=-w2. Решение можно несколько упростить, подставив k/m=w20, тогда

Это, конечно, то же самое решение, которое уже было нами по­лучено ранее. Поскольку m(w20-w2) — действительное число, то фазовые углы F и х совпадают (или отличаются на 180°, если (w2>w20). Об этом тоже уже говорилось. Модуль х, который определяет размах колебаний, связан с модулем F множителем 1/m(w20-w2); этот множитель становится очень большим, если w приближается к w0. Таким образом, можно достичь очень сильного отклика, если приложить к осциллографу нужную ча­стоту w (если с нужной частотой толкать подвешенный на ве­ревочке маятник, то он поднимается очень высоко).

§ 2. Вынужденные колебания с торможением

Итак, мы можем решить задачу о колебательном движении, пользуясь изящной математикой. Однако изящество немногого стоит, когда задача и так решается просто; математику на­до использовать тогда, когда решаются более сложные зада­чи. Перейдем поэтому к одной из таких задач, которая, кроме того, ближе к действительности, чем предыдущая. Из уравне­ния (23.5) следует, что, если w в точности равна w0, амплитуда колебания становится бесконечной. Этого, конечно, не может быть, потому что многие вещи, например трение, ограничи­вают амплитуду, а мы их не учитывали. Изменим теперь (23.2) так, чтобы учесть трение.

Сделать это обычно довольно трудно, потому что силы тре­ния очень сложны. Однако во многих случаях можно считать, что сила трения пропорциональна скорости движения объекта. Именно такое трение препятствует медленному движению тела в масле или другой вязкой жидкости. Когда предмет стоит на месте, на него не действуют никакие силы, но чем скорее он движется и чем быстрее масло должно обтекать этот предмет, тем больше сопротивление. Таким образом, мы предположим, что в (23.2), кроме уже написанных членов, су­ществует еще один — сила сопротивления, пропорциональная скорости: Ff=-c(dx/dt). Удобно записать с как произведение m на другую постоянную g, это немного упростит уравнение.

Мы уже проделывали такой фокус, когда заменяли k на mw20, чтобы упростить вычисления. Итак, наше уравнение имеет вид

или, если положить с=mg и k=mw20 и поделить обе части на m,

Это самая удобная форма уравнения. Если g очень мало, то мало и трение, и, наоборот, большие значения g соответствуют громадному трению. Как решать это новое линейное уравнение? Предположим, что внешняя сила равна F0cos(wt+D); можно было бы подставить это выражение в (23.6а) и попытаться ре­шить полученное уравнение, но мы применим наш новый метод. Представим F как действительную часть , a x — как действительную часть и подставим эти комплексные числа в (23.6а). Собственно говоря, и подставлять-то нечего; внимательно посмотрев на (23.6а), вы тут же скажете, что оно превратится в

[Если бы мы попытались решить (23.6а) старым прямолиней­ным способом, то оценили бы по достоинству магический «комп­лексный» метод.] Поделив обе части уравнения на exp(iwt), найдем отклик осциллятора на силу

Итак, отклик x равен силе F, умноженной на некоторый множи­тель. Этот множитель не имеет ни названия, ни какой-то своей собственной буквы, и мы будем обозначать его буквой R:

тогда

Этот множитель можно записать либо как p+iq, либо как рехр(iq). Запишем его в виде рехр(iq) и посмотрим, к чему это приведет. Внешняя сила — это действительная часть числа F0ехр(iD)ехр(iwt), она равна F0cos(wt+D). Уравне­ние (23.9) говорит нам, что отклик равен ; мы условились

писать R в виде R=rехр(iq); следовательно,

Вспомним (об этом уже говорилось), что физическое значение х, равное действительной части комплексного числа х, равно дей­ствительной части rF0exp[i(q+D)]exp(iwt). Но r и F0действительны, а действительная часть ехр[i(q+D+wt)] — это просто cos(wt+D+q). Таким образом,

x=rF0cos(wt+D+q). (23.10)

Это значит, что амплитуда отклика равна амплитуде силы F, умноженной на коэффициент усиления r; мы нашли «размах» колебаний. Но это еще не все: видно, что х колеблется не в такт с силой; фаза силы равна D, а у x; она сдвинута на дополни­тельную величину q. Следовательно, r и q — это величина и фазовый сдвиг отклика.

Найдем теперь значение r. Квадрат модуля любого комп­лексного числа равен произведению этого числа на комплексно сопряженное, т. е.

Можно найти и фазовый угол q

значит,

Знак минус возник оттого, что tg(-q) =-tgq. Угол q отрицате­лен при всех значениях w, т. е. смещение х отстает по фазе от силы F.

На фиг. 23.2 показано, как изменяется r2 при изменении час­тоты (r2 для физика интереснее, чем r, потому что r2 пропорцио­нально квадрату амплитуды, а значит, и той энергии, которую передает осциллятору внешняя сила).

Фиг.23.2. График зависимости r2 от w.

Очевидно, что если gмало, то основной член в (23.11) — это 1/(w20-w2)2, и отклик стремится к бесконечности, если w приближается к w0. Но эта «бесконеч­ность» — не настоящая бесконечность, потому что даже если w=w0, то все еще остается слагаемое 1/g2w2. Зависимость сдвига фазы от частоты изображена на фиг. 23.3.

Фиг. 23.3. График зависимости q от w.

Иногда приходится иметь дело с формулой, немного отли­чающейся от (23.8); она тоже называется «резонансной» и, не­смотря на некоторое отличие от (23.8), описывает те же самые явления. Дело в том, что если значение g очень мало, то наи­более интересная область резонансной кривой лежит около частоты w=w0, а здесь при малых g формулу (23.8) с большой степенью точности можно заменить приближенной формулой. Поскольку w20-w2=(w0-w)(w0+w), то для w, очень близких к w0, разность квадратов почти равна 2w0(w0-w), a gw можно заменить на gw0. Значит, w20-w2+gw»2w0(w0-w+ig/2) и

Легко найти и r2:

А теперь решите сами такую задачу: с увеличением частоты зна­чение r2 сначала растет, достигает при w0 максимума, а потом снова убывает. На каком расстоянии от w0 расположены часто­ты, которым соответствуют значения r2, вдвое меньшие мак­симального? Покажите, что при очень малом g эти точки от­стоят друг от друга на расстояние Dw=g. Это значит, что ре­зонанс делается более острым по мере того, как влияние тре­ния становится все слабее и слабее.

Другой мерой ширины резонанса может служить «доброт­ность» q=wo/g (чем уже резонанс, тем больше Q); если Q=1000, то по шкале частот ширина резонансной кривой равна всего 0,001. Резонансной кривой на фиг. 23.2 соответствует Q=5.

Явление резонанса важно потому, что оно проявляется доволь­но часто; описанию некоторых видов этих проявлений мы посвя­тим остаток главы.

§ 3. Электрический резонанс

Простейшие и самые широкие технические применения резо­нанс нашел в электричестве. Имеется довольно много устройств, из которых собираются электрические цепи. Их часто называют пассивными элементами цепи, и бывают они трех типов, хотя в каждый элемент одного типа всегда примешано чуточку эле­ментов других типов. Прежде чем подробно описать эти элементы, заметим, что наше представление о механическом осцилляторе как о массе, подвешенной к концу пружины, всего лишь приближение. В «массе» сосредоточена вовсе не вся масса системы: пружина тоже обладает какой-то массой, пружина тоже инерционна. Точно так же «пружина» не состоит из одной пружины, масса тоже немного упруга, а не абсолютно тверда, как это может показаться. Подпрыгивая вверх и вниз, она слегка изгибается под толчками пружины. Так же обстоит дело и в электричестве. Расположить все предметы по «элемен­там цепи» с чистыми, идеальными характеристиками можно только приближенно. Так как у нас нет времени обсуждать пре­делы таких приближений, мы просто предположим, что они до­пустимы.

Итак, о трех элементах цепи. Первый называется емкостью (фиг. 23.4); в качестве примера емкости могут служить две ме­таллические пластинки, разделенные тонким слоем диэлект­рика.

Фиг. 23.4. Три пассивных элемента цепи.

Если пластинки зарядить, то между ними возникает раз­ность потенциалов. Та же самая разность потенциалов будет между точками А и В, потому что при любой дополнительной разности потенциалов вдоль соединительных проводов заряды стекут по проводам. Таким образом, заданной разности потен­циалов V между пластинками соответствуют определенные заряды +q и -q на каждой пластинке. Между пластинками существует некое электрическое поле; мы даже вывели соответствующую формулу для него (см. гл. 13 и 14)

V=sd/e0=qd/e0A , (23.14)

где d — расстояние между пластинками, А — площадь пласти­нок. Заметим, что разность потенциалов линейно зависит от за­ряда. Если построить емкость не из параллельных пластин, а придать отдельным электродам какую-нибудь другую форму, разность потенциалов будет по-прежнему пропорциональна заряду, но постоянную пропорциональности не так-то легко будет рассчитать. Однако надо знать только одно: разность по­тенциалов между концами емкости пропорциональна заряду V=q/C; множитель пропорциональности равен 1/С (С и есть емкость объекта).

Второй элемент цепи называется сопротивлением; этот эле­мент оказывает сопротивление текущему через него электриче­скому току. Оказывается, что все металлические провода, а так­же многие другие материалы сопротивляются току одинаково; если к концам куска такого материала приложить разность по­тенциалов, то электрический ток в куске I=dq/dt будет пропор­ционален приложенной разности потенциалов

V=RI=R(dq/dt). (23.15)

Коэффициент пропорциональности называют сопротивлением R. Соотношение между током и разностью потенциалов вам, на­верное, уже известно. Это закон Ома.

Если представлять себе заряд, сосредоточенный в емкости, как нечто аналогичное смещению механической системы х, то электрический ток dq/dt аналогичен скорости, сопротивление R аналогично коэффициенту сопротивления g, а 1/С аналогично постоянной упругости пружины k. Самое интересное во всем этом, что существует элемент цепи, аналогичный массе! Это спираль, порождающая внутри себя магнитное поле, когда через нее проходит ток. Изменение магнитного поля порождает на концах спирали разность потенциалов, пропорциональную dI/dt. (Это свойство спирали используется в трансформаторах.) Магнитное поле пропорционально току, а наведенная разность потенциалов (так ее называют) пропорциональна скорости из­менения тока

V=L(dI/dt)=L(d2q/dt2). (23.16)

Коэффициент L — это коэффициент самоиндукции; он является электрическим аналогом массы.

Предположим, мы собираем цепь из трех последовательно соединенных элементов (фиг. 23.5); приложенная между точ­ками 1 и 2 разность потенциалов заставит заряды двигаться по цепи, тогда на концах каждого элемента цепи тоже возникает

разность потенциалов: на концах индуктивности VL=L(d2q/dt2), на сопротивлении VR=R(dq/dt), а на емкости Vc=q/C.

Фиг. 23.5. Электрический ко­лебательный контур, состоящий из сопротивления, индуктивности и емкости.

Сумма этих напряжений дает нам полное напряжение

Мы видим, что это уравнение в точности совпадает с механиче­ским уравнением (23.6); будем решать его точно таким же спо­собом. Предположим, что V(t) осциллирует; для этого надо со­единить цепь с генератором синусоидальных колебаний. Тогда можно представить V(t) как комплексное число V, помня, что для определения настоящего напряжения V(t) это число надо еще умножить на exp(iwt) и взять действительную часть. Анало­гично можно подойти и к заряду q, а поэтому напишем уравнение, в точности повторяющее (23.8): вторая производная q— это (iw)2q, а первая — это (iw)q. Уравнение (23.17) перейдет в

или

последнее равенство запишем в виде

где w20=1/LC, a g=R/L. Мы получили тот же знаменатель, что и в механической задаче, со всеми его резонансными свойст­вами! В табл. 23.1 приведен перечень аналогий между элект­рическими и механическими величинами.

Таблица 23.1 · МЕХАНИЧЕСКИЕ И ЭЛЕКТРИЧЕСКИЕ ВЕЛИЧИНЫ

Еще одно чисто техническое замечание. В книгах по электри­честву используют другие обозначения. (Очень часто в книгах на одну и ту же тему, написанных людьми разных специаль­ностей, используются различные обозначения.) Во-первых, для обозначения Ц-1 используют букву j, а не i (через i должен обозначаться ток!). Во-вторых, инженеры предпочитают соотношение между V и I, а не между V и q. Они так больше привыкли. Поскольку I=dq/dt=iwq, то вместо q можно под­ставить I/iw, и тогда

Можно слегка изменить исходное дифференциальное уравнение (23.17), чтобы оно выглядело более привычно. В книгах часто попадается такое соотношение:

Во всяком случае, мы находим, что соотношение (23.19) между напряжением V и током I то же самое, что и (23.18), и от­личается только тем, что последнее делится на iw. Комп­лексное число R +iwL+1/iwC инженеры-электрики часто называют особым именем: комплексный импеданс Z. Введение новой буквы позволяет просто записать соотношение между током и сопротивлением в виде V=ZI. Объясняется это при­страстие инженеров тем, что в юности они изучали только цепи постоянного тока и знали только сопротивления и закон Ома: V=RI. Теперь они более образованы и имеют уже цепи перемен­ного тока, но хотят, чтобы уравнения были те же самые. Вот они и пишут V=ZI, и единственная разница в том, что теперь со­противление заменено более сложной вещью: комплексным чис­лом. Они настаивают на том, что они не могут использовать принятого во всем мире обозначения для мнимой единицы и пишут j; поистине удивительно, что они не требуют, чтобы вме­сто буквы Z писали букву R! (Много волнений доставляют им разговоры о плотности тока; ее они тоже обозначают буквой j. Сложности науки во многом связаны с трудностями в обозна­чениях, единицах и прочих выдумках человека, о чем сама при­рода и не подозревает.)

§ 4. Резонанс в природе

Хотя мы детально разобрали вопрос о резонансе в электри­ческих цепях, можно приводить пример за примером из любых наук и отыскивать в них резонансные кривые. В природе очень часто что-нибудь «колеблется» и так же часто наступает резо­нанс. Об этом уже говорилось в одной из предыдущих глав; приведем теперь некоторые примеры. Зайдите в библиотеку, возьмите с полки несколько книг, полистайте их; вы обнаружите кривые, похожие на кривые фиг. 23.2, и уравнения, по­хожие на уравнения, приведенные в этой главе. Много ли най­дется таких книг? Для убедительности возьмем всего пять-шесть книг, и они обеспечат вас полным набором примеров резонансов.

Первые два относятся к механике. Самый первый грандио­зен — речь идет о колебаниях атмосферы. Если бы атмосфера, ко­торая, по нашим представлениям, шарообразна и обволакивает нашу Землю равномерно со всех сторон, под влиянием Луны вы­тянулась бы в одну сторону, то атмосфера приняла бы форму вы­тянутой дыни. Если предоставить атмосферу, имеющую форму дыни, самой себе, то возникнут колебания. Так получается осцил­лятор. Этими колебаниями управляет Луна, которая вращается вокруг Земли. Чтобы понять, как это происходит, представим се­бе, что Луна стоит неподвижно на каком-то расстоянии от Земли, а Земля вращается вокруг своей оси. Поэтому проекция силы, скажем, на ось х имеет периодическую составляющую. Отклик атмосферы на приливно-отливные толчки Луны будет обычным откликом осциллятора на периодическую силу. Кривая bна фиг. 23.6 изображает ожидаемый отклик атмосферы (кривая а приведена на заимствованном нами рисунке из книги Мунка и Мак-Дональда по другому поводу и нас не касается). Может показаться странным, что удалось начертить эту кривую: ведь Земля вращается с постоянной скоростью, и поэтому мож­но получить только одну точку на кривой — точку, приблизи­тельно соответствующую периоду 12 — 12,7 час (приливы бывают дважды в сутки) плюс еще немного, потому что надо учесть движение Луны. Но, измеряя величину атмосфер­ных приливов и время их задержки — фазу, можно найти обе характеристики отклика r и q. По ним можно вычислить w0 и g а затем начертить уже всю кривую! Вот пример чистой науки. Из двух чисел получают два числа, по этим двум числам чертят очень красивую кривую, которая, конечно, прохо­дит через ту же точку, по которой построена кривая! Кривая эта, конечно, бесполезна, пока нельзя измерить еще чего-нибудь, а в геофизике сделать это зачастую очень трудно. В нашем слу­чае тем, что нужно было бы еще измерить, могут служить колебания атмосферы с собственной частотой w0; необходимо какое-то возмущение, которое бы заставило атмосферу коле­баться с частотой w0. Такой случай однажды представился. В 1883 г. произошло извержение вулкана Кракатау, в резуль­тате которого в атмосферу взлетело пол-острова. Взрыв был такой, что удалось измерить период колебаний атмосферы. Он оказался равным 101/2 час. Собственная частота w0, получен­ная из кривой фиг. 23.6, была равна 10 час 20 мин; таким об­разом было получено по крайней мере хоть одно подтверждение правильности наших представлений об атмосферных приливах.

Фиг. 23.6. Влияние внешнего возбуждения на атмосферу.

Во втором примере речь пойдет о совсем малых колебаниях. Мы рассмотрим кристалл хлористого натрия, который со­стоит из расположенных друг возле друга ионов натрия и хлора (мы об этом говорили ранее). Ионы эти несут электрический заряд: первый — положительный, второй — отрицательный. Посмотрим, какие интересные колебания могут возникнуть в кристалле. Если отодвинуть все положительные заряды впра­во, а отрицательные — влево и предоставить их самим себе, то они начнут колебаться взад и вперед: решетка ионов натрия против решетки ионов хлора. Но как растащить эти заряды? Очень просто: если внести кристалл в электрическое поле, оно отодвинет положительные за­ряды в одну сторону, а отри­цательные — в другую! Зна­чит, имея внешнее электриче­ское поле, можно, пожалуй, вызвать колебания кристалла. Но для этого частота электриче­ского поля должна быть столь большой, что она соответствует инфракрасному излучению! Таким образом попытаемся построить резонансную кривую, измеряя поглощение инфракрасного света хлористым натрием. Такая кривая изображена на фиг. 23.7.

Фиг. 23.7. Прохождение инфра­красного излучения через тонкую (0,17 мк) пленку поваренной соли.

По абсциссе отложена не частота, а длина волны, но это техни­ческая деталь; между частотой и длиной волны существует стро­го определенное соотношение, так что мы все-таки имеем дело со шкалой частот, и одна из этих частот— резонансная ча­стота.

Ну, а что можно сказать о ширине резонансной кривой? Чем эта ширина определяется? Очень часто кривая выглядит гораздо шире, чем ей предписывается теоретическим значением g (эта ширина называется естественной шириной). Есть две причины уширения резонансной кривой. Мы наблюдаем колеба­ния многих осцилляторов сразу, а их частоты могут немного от­личаться. К этому приводят, например, натяжения в отдельных частях кристалла. Поэтому мы видим сразу много резонансных кривых, проходящих рядом. Они сливаются в одну кривую с большей шириной. Вторая причина очень проста — не всегда можно точно измерить частоту. Сколько со спектрометром ни возись, он всегда зарегистрирует не одну частоту, а целый спектр частот Dw. Поэтому может оказаться, что разрешающая сила спектрометра недостаточна для определения точной формы кри­вой. Так или иначе, но, глядя на фиг. 23.7, трудно сказать, что там за ширина — естественная или та, что соответствует неоднородностям кристалла или разрешающей силе спектрометра.

Еще один пример —более хитрый. Посмотрим, как качает­ся магнит. Если поместить магнит в постоянное магнитное поле, то северный полюс захочет повернуться в одну сторону, а юж­ный — в другую, и если магнит может поворачиваться вокруг оси, он будет колебаться около положения равновесия, как это делает стрелка компаса. Однако магниты, о которых пойдет речь,— это атомы. Они обладают моментом количества движе­ния, и вращение порождает не простое движение в направле­нии поля, а прецессию. Посмотрим со стороны на какую-нибудь составляющую «шатаний», а потом возмутим колебания или по­пробуем управлять ими, чтобы затем измерить поглощение.

На фиг. 23.8 изображена кривая поглощения — типично резонансная кривая.

Фиг. 23.8. Зависимость потери, магнитной энергии в парамаг­нитном органическом соединении от напряженности приложенного поля.

Только получена она немного не так, как предыдущая. Частота горизонтального поля, управляющего ко­лебаниями, все время остается постоянной, хотя, казалось бы, экспериментатор, чтобы получить кривую, должен менять ча­стоту. Можно поступить и так, но технически легче оставить и неизменной, а менять напряженность постоянного поля, что соответствует изменению w0 в нашей формуле. Таким образом мы имеем дело с резонансной кривой для w0. Тем не менее мы получаем резонанс с определенными w0 и g.

Пойдем дальше. Следующий наш пример связан с атомным ядром. Движение протонов и нейтронов в ядре — в некотором смысле колебательное движение. Убедиться в этом можно при помощи такого эксперимента: давайте обстреливать ядра лития протонами. Мы обнаружим, что в ядрах при этом будут происхо­дить какие-то реакции, в результате которых возникает g-излучение. Кривая, изображающая количество испущенного из­лучения, имеет очень острый, типично резонансный максимум. Это изображено на фиг. 23.9. Однако приглядитесь к рисунку повнимательнее: на горизонтальной шкале отложена не частота, как обычно, а энергия! Дело в том, что та величина, которую в классической физике мы привыкли считать энергией, в кван­товой механике оказывается определенным образом связанной с частотой некоторой волны. Если в привычной нам крупномас­штабной физике при анализе какого-нибудь явления приходится иметь дело с частотой, то в квантовомеханических явлениях, связанных с атомным веществом, аналогичные кривые будут зависеть от энергии. Кривая на фиг. 23.9 иллюстрирует эту связь. Размышляя над этой кривой, можно прийти к мысли, что частота и энергия имеют глубокую взаимосвязь; так оно и есть на самом деле.

Вот еще одна резонансная кривая, полученная в результате опытов с атомными ядрами; она очень узкая, уже всех предыду­щих. На фиг. 23.10 величина w0 соответствует энергии 10 000 эв, а ширина g равна приблизительно 10-5 эв; иначе говоря, Q=1010!

Фиг. 23.10. Кривая поглощения g-излучения, полученная Р. Мёссбауэром.

Построив такую кривую, экспериментатор измерил Q самого добротного из ныне известных осцилляторов. Это проделал Р. Мёссбауэр, получивший за свои работы Нобелевскую пре­мию. На горизонтальной шкале отложена скорость, потому что для сдвига частоты использовался эффект Допплера, получаю­щийся в результате относительного движения источника и по­глотителя. Цифры дают некоторое представление о тонкости эксперимента — пришлось измерять скорости в несколько сан­тиметров в секунду! Если продолжить горизонтальную шкалу влево, то нулевую частоту мы найдем на расстоянии 1010 см! Страницы для этого, пожалуй, не хватит!

Наконец, возьмем какой-нибудь выпуск журнала Physical Review, скажем, за 1 января 1962 г. Найдется ли в нем резонансная кривая? Резонансные кривые имеются непременно в каждом выпуске этого жур­нала, и на фиг. 23.11 изоб­ражена одна из таких кри­вых.

Фиг. 23.11. Зависимость эф­фективных сечений реакций от величины момента количества дви­жения.

Нижняя кривая описывает нерезонанс­ный фон; верхняя кривая показывает, что на зтот фон наложено резонансное сечение.

Это очень интересная кривая. Она соответствует ре­зонансу в реакциях со стран­ными частицами (K--мезоны и протоны). Резонанс был об­наружен при измерении ко­личества частиц разных сор­тов, получающихся в резуль­тате реакции. Разным про­дуктам реакции соответствуют разные кривые, но в каждой из них при одной и той же энергии есть пики примерно одинаковых очертаний. Зна­чит, при определенной энергии K--мезона существует резо­нанс. При столкновении К--мезонов и протонов, наверное, создаются благоприятные для резонанса условия, а может быть, даже новая частица. Сегодня мы еще не можем сказать, что такое эти выбросы в кривых — «частица» или просто ре­зонанс. Очень узкий резонанс соответствует очень точно от­меренному количеству энергии; это бывает тогда, когда мы имеем дело с частицей. Когда резонансная кривая уширяется, то становится трудно сказать, с чем мы имеем дело — с части­цей, которая живет очень мало, или просто с резонансом в реак­ции. В гл. 2 мы отнесли эти резонансы к частицам, но когда писалась та глава, об этом резонансе еще не было известно, по­этому нашу таблицу элементарных частиц можно дополнить!