Глава 4 Частица, выпрыгнувшая из зеркала
Глава 4
Частица, выпрыгнувшая из зеркала
О пользе альпинизма
Однажды я отправился с группой альпинистов на Памир. Восхождение было тяжелым. В день удавалось пройти совсем немного. Быстро наступал вечер. Как всегда в горах, сумерек почти не бывало. Солнце сваливалось за горы, и сразу наступала ночь, а с нею холод.
На ветру разбивались палатки, разогревался немудреный альпинистский ужин, и мы залезали в спальные мешки, тревожно прислушиваясь к тому, как ветер свистит и рвет полу палатки. Начинались разговоры, обычно веселые, иногда даже разгорались споры, несмотря на то что за день все доходили до свинцовой усталости.
И однажды кто-то из нас, будучи, видимо, в философском настроении, сказал: «Братцы, а чего мы, собственно говоря, лезем в горы? Что нам, внизу места мало?»
Вопрос, конечно, был полушутливым. Но разгорелся жаркий спор. Ребята в основном были студенты и два-три научных работника. Может быть, поэтому тема спора быстро «съехала» на то, чт? вообще заставляет человека искать неизведанное, подвергать себя трудностям и лишениям. Причем делать это добровольно и не задумываться над тем, что ждет в конце пути.
«Я думаю, что внизу, в обжитых местах, просто скучновато, — сказал один из нас, огромный парень с совершенно детскими глазами. — Ну, чего я там не видел? А вот здесь, на горе, — все новое, даже облака новые, ветер дует по-другому, чем в долине. А простор какой!»
«Простор в самом деле огромный. На сотни километров видно», — согласился с ним другой студент, такой щуплый на вид, что было просто непонятно, как он тащит на себе рюкзак соизмеримых с ним размеров. Он считался у нас философом, поэтому над ним охотно подтрунивали.
«А зачем тебе видеть на сотни километров? — невинно спросила молодая наша спутница. — Ты что, хочешь быть орлом?» Мы все на минуту представили себе нашего философа в роли орла и весело рассмеялись.
«Нет, братцы, серьезно! — не сдавался он. — Орлу можно позавидовать. Ему бы еще наши мозги. Чтобы он умел обобщать результаты своих наблюдений. Гениальная птичка была бы!»
Мы опять посмеялись и еще немножко поспорили о том, что, в сущности, такое гениальные ученые. Но усталость взяла свое, и спор быстро погас.
Я вспомнил о нем, начав писать эту главу. Да, в словах маленького альпиниста была доля истины. Один из признаков гениальности ученого заключается именно в том, что он, подобно альпинисту, может высоко подняться над долиной привычного, каждодневного и увидеть мир в новом и резком свете гор.
Тяжел, очень тяжел этот подъем на гору. Идешь, идешь, а вершина все далеко. Она словно и не приближается к тебе. Открываются новые широкие просторы, но обязательно горизонт загораживают другие горы. И чем выше, тем круче подъем, тем меньше твердой почвы, на которую можно опереться, тем труднее дышать разреженным горным воздухом.
Но ничего не поделаешь. Любознательность, которая толкает ученых вперед, необорима.
Первые шаги
Отряд альпинистов, совершающих восхождение на гору квантовой механики, множится с каждым годом, с каждым новым успехом. Одним из первых к этому отряду присоединяется молодой англичанин французского происхождения — Поль Адриен Морис Дирак.
Пока на горе места много. В квантовой механике еще тьма нерешенных проблем. На земном шаре физика пока еще не столь популярна, физики еще не в большом числе. А тех, кто безоговорочно уверовал в истинность новой теории, и того меньше. Как шутливо говорят ученые, давки еще нет.
Дирак разглядывает горизонты. Его внимание привлекает холм неподалеку. Верхушка холма теряется в тумане, но холм не кажется недоступным. Неприятно то, что он загораживает внушительную часть горизонта.
Дираку только двадцать с немногим лет, и он полон юношеского задора. Он решает отколоться от основного отряда альпинистов и в одиночку покорять холм. На языке физики сей холм называется — «синтез квантовой механики и теории относительности».
Старая квантовая теория Нильса Бора позволила подсчитать, что электроны в атомах движутся с весьма высокими скоростями — в десятки тысяч километров в секунду. Правда, это еще далековато от скорости света, которая составляет триста тысяч километров в секунду.
Теория относительности Альберта Эйнштейна — она в тот год может отметить свое двадцатилетие — говорит, что все удивительные вещи с телами начинают отчетливо проявляться лишь при скоростях тел, довольно близких к скорости света. Во всяком случае, при скоростях порядка сотни тысяч километров в секунду.
К таким скоростям электроны могут приближаться лишь в самых тяжелых атомах, заполняющих последние клетки периодической таблицы химических элементов. Но не это обстоятельство занимает сейчас Дирака. Раз в принципе околосветовые скорости электронов возможны, значит, в квантовую теорию надо включить и их. Если хотите — впрок.
С самого начала выясняется, что забраться на холм не так-то просто. Первые же камни, на которые ступает Дирак, ускользают из-под его ног.
Теория относительности резко разграничивает движения со скоростями меньше и больше скорости света. Первые — возможны, вторые — нет. Квантовая механика, однако, не столь категорична в своих суждениях. Вспомним хотя бы гейзенберговские соотношения неопределенностей. Они утверждают, что, чем определеннее мы пытаемся узнать место, где находится частица, тем более неопределенной становится ее скорость.
Это глубокое различие в подходе двух теорий — теории быстрых движений больших тел и теории медленных движений маленьких тел — в те годы еще не осознается физиками. Дирак видит лишь, что решения составленного им уравнения, которое является развитием основного уравнения квантовой механики на быстрые движения, не обладают релятивистской инвариантностью.
Ворота в рай
Страшные это слова — «релятивистская инвариантность». Страшные своей неумолимостью. Если теория не обладает этим свойством, физики без разговоров сдают ее в архив. Все равно прока от нее не будет.
Что же означают эти страшные слова? Не удивляйтесь: вам, оказывается, хорошо известен скрытый в них смысл. Еще в первые годы изучения физики в школе вы узнаёте такое важное понятие, как система отсчета для движения тел, и такое важнейшее положение, что законы движения тел не должны зависеть от того, как вами выбрана система отсчета, в которой изучаются эти движения. Это и понятно: представляете себе, какой произвол воцарился бы в мире в противном случае!
Вам известны и приводимые тому примеры. Если вы играете в волейбол на равномерно плывущем пароходе, то мяч летает точно так же, как если бы вы играли на лужайке. И уравнения движения этого мяча в «системе отсчета» судьи, сидящего на вышке, ничем не отличаются друг от друга в обоих случаях.
Точно так же нет различия между тем, как идут ходики в равномерно движущемся поезде или в доме стрелочника на полустанке, мимо которого проносится поезд. И в том и в другом случае движение маятника часов описывается одним и тем же уравнением.
На языке физики это положение называется принципом относительности Галилея. Почти три века в справедливости этого принципа никто не сомневался.
Но вот приходит Альберт Эйнштейн и доказывает, что принцип Галилея верен лишь для сравнительно медленных движений тел. Для быстрых движений он принимает иной вид. Теперь его надо заменять принципом относительности Эйнштейна.
Здесь мы не будем описывать открытия Эйнштейна. Это описание можно найти в любой популярной книге по теории относительности. Укажем лишь на гораздо более высокую требовательность этого принципа.
Принципу Галилея часто угодить довольно легко. Как выразился один физик, «этот принцип протестует только в том случае, когда к нему подносят на проверку теории неравномерных, ускоренных движений».
Принцип Эйнштейна гораздо более разборчив. Со времени своего открытия он успел отвергнуть множество скороспелых теорий, на вид таких правильных и убедительных. Прошли старые добрые времена. Теперь ворота, через которые может пройти в рай физическая теория, стали очень-очень узкими.
На теориях, не пролезших сквозь эти ворота, принцип Эйнштейна ставит железное клеймо: «релятивистски неинвариантны». А по-русски: «уравнения и решения теории зависят от выбора системы отсчета при движении тел с околосветовыми скоростями».
Странный «минус»
Жаль, думает Дирак. Придется искать другие, обходные пути на холм. С принципом Эйнштейна не спорят.
После раздумий Дирак составляет другое уравнение. Оно гораздо сложнее первого, но в одном печалиться нет оснований. Строгая проверка его решений показывает, что на сей раз они релятивистски инвариантны. Причем — все.
Как это понять? Разве у уравнения Дирака не одно решение? Оказывается, нет: оно имеет целых четыре решения! И вместе с тем все они описывают один и тот же электрон.
Понять смысл первых двух решений удается сравнительно быстро. Осматривая окрестности с высоты первой завоеванной ступеньки, Дирак замечает явление, открытие которого имеет к тому времени почти трехлетнюю давность. Это открытие спина Уленбеком и Гаудсмитом, о чем мы уже рассказывали в предыдущей главе.
Погрешив против истины, ученые вначале для простоты объясняли спин, как некое «собственное вращение» электрона. И летящий электрон уподобили снаряду, выпущенному из нарезного орудия: он и летит и вращается одновременно.
Почему бы не существовать орудиям как с правой, так и с левой нарезкой? Тогда один снаряд вращался бы в полете по часовой, а другой — против часовой стрелки. Спин такого снаряда в одном случае «смотрел» бы, например, вдоль, а в другом — против направления движения.
Не все ли равно? Действительно, оба направления вращения нельзя никак отличить друг от друга не только у снарядов, но и у электронов. Так будет казаться физикам еще добрых тридцать лет. И только тогда выяснится, что… впрочем, всему свое время.
Пока что Дирак принимает, что для электрона возможна как правая, так и левая «нарезка». Этим двум направлениям спина и отвечают первые два решения. Остаются еще два. С ними дело обстоит гораздо сложнее.
Вернее, с одним из них. Как оказывается, оно соответствует отрицательной полной энергии электрона.
Что же в этом необычного? Физикам отрицательная полная энергия в диковинку. Она отвечает несвободным частицам, например электронам в атоме, в куске металла и вообще в любой яме. Собственно, отрицательность энергии означает лишь, что частица не может двигаться, как ей вздумается. Она находится в коллективе других частиц, связана в нем, а значит, следует правилам поведения, принятым в этом коллективе.
Но уравнение Дирака написано ведь для совершенно свободного электрона!
Да, интересное положение…
Потенциальная энергия у любой свободной частицы, как известно, равна нулю, и полная ее энергия совпадает с кинетической. Отрицательная кинетическая энергия! Мы с этим уже встречались: помните туннельный эффект?
Только там это на поверку оказалось фикцией, а здесь — чистой явью. И следствие этого вам тоже понятно: значит, отрицательна масса электрона.
Замечательно! Если бы из таких, с позволения сказать, частиц состоял, например, поезд, то он двигался бы сверхоригинально. Локомотив тащил бы его, скажем, в Ленинград, а поезд преспокойно удалялся бы в Москву!
Дирак и сам понимает, что это «замечательно». Любой человек на его месте поступил бы так, как делает, когда у него в ответе получается: «площадь дома равняется ±100 квадратных метров». Отбросил бы минус, как не имеющий никакого физического смысла.
Дирак, как англичанин, может быть полон здравого смысла. Но как истинный ученый, он пытается докопаться до происхождения этого «минуса».
Проходит немного времени, и Дирак превращает странный «минус» в один из самых выдающихся «плюсов» за всю историю физики!
Минута затишья
Довольно быстро выясняется, что все становится на свои места, если отрицательную энергию приписать положительно заряженной частице. Такая частица физикам известна — это протон.
Можно обрести успокоение, но ненадолго. Спустя полгода Роберт Оппенгеймер доказывает, что такой частицей протон быть не может. Он слишком массивен: положительная частица должна иметь такую же массу, что и электрон.
Ох, этот Роберт Оппенгеймер! Блестящий ученый, отличный организатор (это он руководил работой ученых по созданию американской атомной бомбы), многогранно одаренный человек. Но странный талант: он открыл много дверей в мир неизведанного, а не вошел ни в одну из них. История науки знает таких людей. Они первые дают сигнал к атаке, но наступление продолжается без них. Они же тем временем готовят удар на другом участке фронта.
Но история науки знает и других людей. Эти ученые долго и напряженно работают в сравнительно узких областях, но зато расширяют их до огромных пределов. Таким ученым был, например, Эйнштейн. Известный философ Людвиг Берне, друг Карла Маркса, с полным основанием мог бы, пользуясь своей классификацией характеров, назвать талант Оппенгеймера «эллинским», а гений Эйнштейна — «иудейским».
Ох, этот «эллин» Оппенгеймер! Дирак со вздохом поднимает свой рюкзак, который было снял, присев отдохнуть. Надо продолжать восхождение.
Теперь предстоит выяснить, как «влетела» в уравнение для электрона какая-то посторонняя частица. Да еще и похожая как две капли воды на электрон, разве только с противоположным по знаку электрическим зарядом.
А может быть, эта частица вовсе не посторонняя? Может быть, она связана с электроном какими-то пока неведомыми узами? Например, узами братства? Допустим. Но в таком случае поиски обращаются на их возможного родителя. Чем может быть этот родитель?
И снова напряженное раздумье…
Рождается совершенно безумная, на первый взгляд, мысль: электрон и его зеркальный брат совместно рождаются… из пустоты! Пустота, вакуум, как ее называют физики, — вовсе не пуста! Напротив, она до отказа забита электронами! Положительный же двойник электрона — это дырка в заполненной пустоте!
Безумие действительно налицо. Так, во всяком случае, кажется вначале. Но подождем делать такой вывод. Пройдем за Дираком по отвесному пути его рассуждений.
Переполненная пустота
Прислушаемся к беседе, которую ведут сторонник Дирака и еще не обращенный в новую веру его противник.
Говорит сторонник:
— Каким вы назовете пространство, в котором никаким прибором не обнаружить ни одной частицы?
— Ну конечно, совершенно пустым, — отвечает противник.
— А если в этом пространстве есть частицы, которые просто лишены возможности проявить себя, войти в контакт с прибором? Даже если в пространстве полным-полно частиц, вы все равно будете считать его пустым?
— Разумеется! Но позвольте задать вопрос. Как частицы могут лишиться способности взаимодействовать? Если ваши электроны не входят в контакт с измерительным прибором, значит, они и друг с другом не взаимодействуют! Прибор ведь состоит в конечном счете из тех же электронов.
— Правильно.
— Не правильно, а чепуха! Частицы не могут не взаимодействовать, это противоречит самой сущности вещей! — начинает волноваться противник.
— Тоже правильно, — по-прежнему спокойно отвечает сторонник.
— И то правильно, и это правильно? Ничего не понимаю!
— Не волнуйтесь, я вам сейчас объясню. Давайте приложим к куску металла электрическое поле. Пойдет ток, и вы скажете, что в металле есть свободные электроны.
— Верно, — кивает противник.
— А есть ли в металле еще что-нибудь, кроме этих электронов? — спрашивает сторонник.
— Конечно: еще атомы.
— Простите, а как вы это узнали?
— Можно, например, так. Осветим металл рентгеновыми лучами. При высоких энергиях фотоны этих лучей будут вырывать из атомов электроны.
— Значит, при меньшей энергии металл у вас состоит как бы из одних свободных электронов, а увеличили энергию — и появились атомы?
— Конечно, нет! Просто тот вид внутренней структуры, который мы обнаруживаем, зависит от той энергии, с которой мы ее прощупываем.
— Ага! Так почему же вы не хотите понять, что можно взять такую энергию, при которой и пустота обнаружит свою структуру?
Противник снова разводит руками:
— Не понимаю. Пустота — всегда пустота. В ней ничего нет и быть не может.
— Ну, а все же представьте себе пустоту, до отказа забитую электронами. Они ведь не смогут взаимодействовать ни друг с другом, ни с приборами.
— Почему?
— А потому, что это означало бы изменение их энергии. Ведь при взаимодействии одна из частиц всегда что-то теряет из своей энергии, а другая что-то приобретает. И частицы должны занять новые уровни энергии.
— Но где же они могут найти такие уровни? Вы говорите, что все уровни у вас заняты. А как доказал недавно Вольфганг Паули, каждый уровень энергии может быть занят только двумя электронами. Если к ним придет третий, они его не пустят, — недоумевает противник.
— Значит, нет таких свободных уровней?
— Нет.
— Вот потому-то электроны, даже если они сидят в пустоте так же тесно, как сельди в бочке, не могут взаимодействовать друг с другом или с прибором! Но… только до тех пор, пока им не будет сообщена достаточная энергия, чтобы электроны могли выпрыгнуть из пустоты. Как только это произойдет, частицы уже можно будет обнаружить: они приобретают возможность взаимодействовать.
— Что же это за энергия? — начинает понемногу сдаваться противник.
— Давайте сообразим. Электрон должен родиться из пустоты, имея по меньшей мере свою собственную энергию покоя. По закону Эйнштейна эта энергия равна произведению массы покоя электрона на квадрат скорости света.
— Значит, электронам в вакууме надо передать минимум такую энергию?
— Нет, не совсем так. Вы не учли того, что станет с вакуумом после вылета из него электрона. А это надо учитывать.
— A-а, понятно. Учитываю. В заполненной электронами пустоте при этом образуется пустое место. Бр-р-р! Вы меня извините. Говорю, а сам содрогаюсь от своих слов!
Так можно представлять себе «переполненную пустоту» — океан Дирака. Удар по этому океану достаточно энергичным фотоном выбрасывает на берег брызги — электрон, а в пустоте остается дырка — ничуть не менее реальный позитрон. Другими словами, такая картинка изображает превращение гамма-кванта в пару из электрона и позитрона.
Но сторонник лишен жалости. Он продолжает убеждать:
— Назовем это пустое место дыркой. Она имеет заряд.
— Конечно. Раз пустота в целом нейтральна, то вылет из нее электрона должен сообщить ей, то есть дырке, положительный заряд, чтобы эта нейтральность сохранилась.
— Вот-вот. И масса у этой дырки должна быть. Такая же, как у электрона. И на рождение дырки нужно затратить ту же энергию, что на электрон, а всего на пару из электрона и дырки — двойную энергию. Это примерно миллион электрон-вольт.
— Немало.
— Верно, немало. Но при меньшей энергии обнаружить структуру вакуума, теперь вам понятно, невозможно. А если по пустоте ударить с такой или с большей энергией, например, фотоном, то из нее выскочат сразу две частицы — электрон и его зеркальный брат. Назовем этого брата позитроном.
— Уфф! Кажется, теперь я понял!
По горячему следу
Так в начале тридцатых годов была предсказана новая частица. Были установлены ее вид и повадки, из коих главная та, что эта частица рождается в паре с электроном. И должна умирать также вместе с электроном, отдавая при этом, как и электрон, всю ту энергию, которую они получили при своем рождении или приобрели при своей жизни.
Далеко не все ученые верят в находки, полученные теоретиками на кончике пера. В теорию относительности многие уверовали лишь после того, как в 1919 году астрономы подтвердили предсказываемое ею искривление световых лучей вблизи крупных небесных тел.
Так и теперь. Слово за физиками-экспериментаторами. Подтвердят ли они существование новой частицы?
Экспериментаторы берут это дело на заметку. К списку разыскиваемых частиц прибавляется еще одна. С еще большим вниманием просматриваются тысячи фотографий, снятых в камере Вильсона.
На этих фотографиях оставляют следы миллионы космических частиц. Миллионы частиц — миллионы разнообразных событий. И где-то в этих джунглях переплетающихся следов, толстых и тонких, прямых и изогнутых, неожиданно прерывающихся, расщепляющихся на другие следы, — где-то здесь наблюдателя ждет след, оставленный новой, пока неведомой частицей.
Ни одна черточка на фотографии не должна ускользнуть от внимания ученых. А так легко пропустить ее, так легко необычный след принять за привычный, неинтересный. И тогда в стопке уже просмотренных фотопластинок безвозвратно затеряется интереснейшее событие.
Может быть, его уже годы тщетно ждут теоретики. И придется им тогда снова ждать и ждать, пока редкое событие снова удастся схватить на фотопластинке.
Сколько интересных явлений на фотопластинках пропустили экспериментаторы в ранние годы изучения космических лучей! Трудно винить их в этом. Они знали, как наблюдать, но не ведали, что именно надо искать. А не ведали потому, что этого не знали и теоретики.
Но вот в начале 1932 года американский физик Карл Андерсон, изучая снятые на космическом излучении фотографии в камере Вильсона, обнаруживает интересный след.
Вот он, воспроизведен на рисунке.
Первая фотография позитрона. Он пришел сверху, замедлился в свинцовой перегородке и пропал в нижней части камеры Вильсона, где слился с электроном. Если бы этот след оставил электрон, то магнитное поле в камере должно было бы закрутить его в обратную сторону.
Темное поле снимка пересекает толстая горизонтальная полоса — это свинцовая пластинка. Искривленный след говорит о том, что камера работала в сильном магнитном поле. Как мы уже рассказывали выше, такой режим работы камеры впервые осуществил наш замечательный физик Дмитрий Владимирович Скобельцын.
Добавим еще, что снимок ориентирован так же, как и фотопластинка в камере Вильсона: верхняя его часть отвечает участку камеры над свинцовой пластинкой.
Чем же интересна эта фотография?
Сядем вместе с Андерсоном и его коллегой Сетом Неддермайером и займемся анализом снимка. Так сказать, проникнем не в обычную, а в творческую лабораторию ученых.
Необычный след
Сначала идет общее изучение «охотничьей территории». След тонкий, пунктирный. Значит, он принадлежит частице с небольшой массой. По мере удаления от свинцовой пластинки пунктир становится все более редким и наконец прерывается.
В начале своего пути «зверь» энергично задирал встречные молекулы газа, срывая с них электронные «шкуры». Затем, все более растрачивая свою энергию, он все менее мог противостоять сбивающему с пути ветру — магнитному полю: след становился все более искривленным, пока наконец зверь не свалился без сил. Частица тогда затормозилась настолько, что вообще перестала ионизировать встречные молекулы. Тут след и оборвался.
Что с частицей случилось потом?
Об этом мы поговорим ниже. Охотников пока что это не интересует.
А теперь — о необычном. След закручен в сторону, противоположную той, в которую должен был бы быть закручен след электрона. Электрон искривил бы свой путь вправо.
А эта частица закручивается влево, как и полагается… чему?
Андерсон и Неддермайер пытаются сначала предположить, что этот необычный след тоже принадлежит электрону. Только почему-то этот электрон, вместо того чтобы подобно всем космическим частицам двигаться сверху вниз, выбрал обратное направление. Да еще, пройдя через свинцовую пластинку, не уменьшил, а увеличил свою энергию. Диковинный случай, что и говорить!
Наши охотники умышленно сверхосторожны. Семь раз отмерь — один раз отрежь! Это неписаное правило стоит одним из первых в кодексе ученых.
И все же тщательный анализ показывает, что электрон не мог прийти снизу. Даже если бы он преодолел свинцовую пластинку, то потерял бы почти всю свою энергию. Этого, однако, не видно.
Остается единственный вывод: след принадлежит движущейся вниз положительной частице.
И эта частица не протон! Протон такой энергии оставил бы толстый короткий след.
Итак, верхний след может принадлежать только положительной частице с массой, близкой к массе электрона. До сих пор такая частица не наблюдалась. Теперь капкан захлопнулся, частица поймана.
Но Андерсон и Неддермайер не торопятся с выводами. Новые и новые фотоснимки ложатся на стол исследователей. А за океаном в охоту включились еще двое ученых — англичанин Патрик Блеккет и итальянец Джузеппе Оккиалини. Они тоже придирчиво изучают снимки, сделанные с помощью еще более совершенной камеры, чем прибор американских охотников.
К концу 1932 года последние сомнения рассеиваются. Поймана новая частица. Эта частица — тот самый зеркальный двойник электрона. Он получает название позитрона.
Вот один из таких «несомненных» снимков. Прилетел сверху космический фотон. По его энергии, а она, видимо, значительно превышает миллион электрон-вольт, — это фотон довольно жестких гамма-лучей. Или, как его называют проще, — гамма-квант.
Свисающие со свинцовой перегородки «усики» — следы электронно-позитронных пар, образованных в перегородке пришедшими сверху гамма-квантами. Видно, что каждый из следов в паре закручен магнитным полем в разные стороны.
Гамма-квант молекул газа практически не ионизирует, а потому в камере следа не оставил. Влетел фотон в свинцовую пластинку, и… остальное видно прямо глазом. Сотворил этот фотон в свинцовой пластине пару из электрона и позитрона, вылетела эта пара из пластины. Начало магнитное поле сбивать новорожденных братьев на кривую дорожку. И разошлись пути зеркальных братьев: положительный налево пошел, а отрицательный направо.
Вот и сказочке конец… Остается дописать лишь некоторые подробности о рождении и смерти позитрона.
Рождение и смерть позитрона
Сегодня физики уже не лезут на холм по тому пути, который проложил Дирак. Этот путь все же довольно извилист. Они предпочитают более прямой маршрут, который был освоен учеными в последующие годы.
Этот маршрут мысли можно коротко выразить следующими четырьмя словами: «поле превращается в вещество». Но за этими краткими словами стоит целая эпоха в развитии физики.
Мы не историки этой эпохи. Мы не можем останавливаться на всех перипетиях увлекательной судьбы коренных физических понятий, таких, например, как упомянутые выше поле и вещество.
Образно говоря, и то и другое вырвалось из тех рамок, в которые их поставили физики. Будучи разлучены их родителями, они все же сумели ускользнуть из-под родительской опеки и соединились на радость и на горе физикам.
На радость, потому что было открыто исключительно важное новое свойство материи. На горе, потому что физикам — уж в который раз! — пришлось ломать здание своих представлений, чтобы уделить в нем место новой закономерности.
Именно закономерности. Ибо превращение гамма-кванта в пару из электрона и позитрона, иными словами — превращение кванта электромагнитного поля в две вещественные частицы оказалось не единичным, а совершенно универсальным событием в атомном мире.
Фотон при таком превращении всю свою энергию без остатка отдает своим наследникам, а сам исчезает. Если его энергия значительно превышает удвоенную энергию покоя электрона, то избыток переходит в солидную кинетическую энергию обеих частиц.
Куда же заводят зеркальных братьев их кривые дорожки? Электрон, постепенно растратив свою энергию, будет, скорее всего, съеден каким-нибудь ионом, встретившимся на его пути. С позитроном могут случиться более интересные приключения.
Он может, например, подойти к атому и соединиться с одним из его электронов. Произойдет микровзрыв, и вся энергия, которой обладали «покойные» частицы, перейдет в энергию двух или трех гамма-квантов, а те разлетятся по разным направлениям.
Может позитрон встретиться и со свободно гуляющим в камере электроном. При этом, прежде чем слиться, обе частицы предпочитают сначала немного повальсировать друг подле друга, образовав некое подобие атома водорода. С той, однако, разницей, что при этом уже нельзя сказать, какая из частиц неподвижна, а какая кружится возле нее: обе частицы одинаковы по массе. Такой «атом» физики назвали позитронием.
И здесь позитрон в конце концов (спустя миллиардные доли секунды) кончает свою жизнь, исчезая в паре с электроном. Это исчезновение физики неудачно окрестили латинским словом «аннигиляция», что по-русски означает «превращение в ничто».
Так еще можно было говорить в первые годы после открытия Дирака. Но, с тех пор как место пустоты заняло в рассуждениях физиков поле, аннигиляцию приходится понимать как превращение вещества в поле. И круг замыкается: поле рождает частицы, частицы рождают поле. Вечный круговорот вещества и поля.
Позитрон открыл собой целый список античастиц. О том, как искали их охотники за частицами, мы расскажем в последующих главах.