Глава 38. Разделение атомов
Не само знание, но любовь к познанию характеризует ученого. В отличие от него «философ» — это человек, построивший систему представлений, охватывающую, как он думает, все наиболее ценное из того, что стоит знать. Если человек горит жаждой познания и проверяет свои рассуждения, сопоставляя их с данными опыта, каждый ученый будет признавать в нем брата по духу независимо от того, насколько малы знания этого человека.
К. С. Пирс
Сортировка
ВЫПИСКА ИЗ ФИРМЕННОГО КАТАЛОГА, РАЗОСЛАННОГО БАНКАМ: «Эта машина с механическим приводом сортирует и считает с большой скоростью перемешанные монеты… будет считать все монеты от пенни до полудоллара, будет непрерывно засыпать их в мешки или заворачивать заранее заданные количества монет в бумажные обертки… работают два ряда циферблатов: один регистрирует каждый сорт монет в долларах и центах… другой ряд регистрирует каждый номинал монет численно, например 399 пенни, 204 никеля и т. д»
В давние времена банкиры имели время и озабоченно подсчитывали свою кассу. Определение округленного веса мешка монет пришло на смену трудоемкому счету. Современные банкиры покупают машины. В давние времена ученый был даже в худшем положении, чем банкир: он мог разделять атомы химически по элементам и взвешивать «полными мешками», но не мог взять в руки отдельные атомы. Он предполагал, что природа, подобно хорошему чеканщику, выпускает все атомы одного элемента подобными, но это предположение было ошибочным. В настоящее время у нас есть прибор, который сортирует атомы столь же эффективно, как машина — монеты. Этот прибор — масс-спектрограф — использует средства, описанные в двух предыдущих главах (электрические и магнитные поля), для разделения какого-нибудь образца на отдельные атомы и взвешивает атомы. Если элемент содержит не более одного сорта атомов, это взвешивание будет образцом химического анализа, но масс-спектрографическое взвешивание даст нам значительно больше, чем химический анализ. Эксперименты с первыми масс-спектрографами помимо разделения атомов одного элемента на составляющие показывали простое правило — целочисленность масс ядер. Позднее более точные измерения показали небольшие отклонения от этого правила, и эти отклонения, разбивающие нашу веру в простоту природы, привели к сведениям огромной важности об атомном ядре.
Прежде чем рассмотреть современные масс-спектрографы, мы должны взглянуть на историю методов разделения атомов, которая началась в начале нашего столетия,
Осколки атомов
Все электроны имеют отрицательный заряд и все подобны друг другу. Однако положительные ионы — остатки атомов, у которых оторваны электроны, — сильно различаются. Разделение атомов на электроны и положительные ионы — это первое расщепление «неделимых» единиц материи, и оно дает первые наметки атомной структуры.
Наиболее легкий путь получения осколков атомов для их последующего анализа — бомбардировка молекул газа. В настоящее время мы обстреливаем образец газа пучком электронов из маленькой электронной пушки. Полвека тому назад, когда начали производить разделение атомов, бомбардировка осуществлялась приложением высокого напряжения к газу, находящемуся при низком давлении, — при этом ионы и электроны производили еще больше ионов при соударениях. В светящемся электрическом разряде между электродами происходило хаотическое движение электронов, положительных и отрицательных ионов, нейтральных атомов и молекул, рентгеновских лучей и видимого света. Электроды (металлические пластины) вводились в трубку с двух сторон, в каждом электроде высверливались отверстия (фиг. 29).
Фиг. 29. Разрядная трубка с газом при низком давлении, с отверстиями в электродах, позволяющими потокам электронов и положительных ионов распространяться за пределы электрического поля.
Поэтому потоки заряженных частиц проходили через отверстия в пластинах в «заанодное» и «закатодное» пространство. Пучок электронов простреливался через отверстие в аноде. Противоположно заряженный пучок простреливался в противоположном направлении; этот пучок оказался состоящим из значительно более тяжелых частиц, несущих положительные заряды. Каждый из пучков был подвергнут разделению с помощью электрического и магнитного полей.
Пучок электронов наилучшим образом обнаруживает свои свойства в почти полном вакууме, когда имеется мало молекул газа, которые могут замедлять электроны при столкновениях, или ионов, ослабляющих электрическое поле. Именно тогда ясно проявляется единая черта этих частиц независимо от вещества, из которого они получены: одно и то же значение e/m.
Для получения потока положительных частиц в трубке должно быть оставлено некоторое количество газа, поставляющего ионы, которые и образуют поток положительно заряженных частиц.
В анализируемом пространстве должен поддерживаться достаточно хороший вакуум, который сохраняется с помощью непрерывной откачки при очень тонком отверстии в электроде.
Измерения отклонений положительных пучков показали, что они состоят из частиц с массой много большей, чем у электронов; массы частиц зависят от сортов газов и паров в разрядной трубке:
— водород имеет массу 1840 m и заряд +е в сравнении с массой электрона m и зарядом электрона — е;
— кислород имеет массу 16x1840 m и заряд +е, а иногда +2е;
— углерод (полученный испарением твердого образца или разрушением молекул газа, подобного СН4) имеет массу 12x1840 m и заряд +е.
Взвешивание осколков атомов, освобожденных от некоторого числа электронов, явилось одним из важнейших экспериментов в атомной физике. Из этих экспериментов могло быть сделано первое предположение о внутренней структуре атомов: часть атома должна состоять из легких электронов, большая часть массы атома приходится на положительный остаток. Таким образом, атомы — «нерасщепляемые» элементарные частицы химии — были разделены на компоненты. Задача 1 иллюстрирует общую идею такого разделения в упрощенном виде.
Задача 1. Разделение атомов в газовом разряде
На фиг. 30 показана разрядная трубка с электродами А и В в виде металлических пластин. К электродам приложена большая разность потенциалов для создания сильного поля в области Y между электродами. Предполагается, что во внешних областях X и Z горизонтальное электрическое поле отсутствует. В области Y находится небольшое количество газа, в газе образуются электроны и положительные ионы.
Фиг. 30. Разрядная трубка с отклоняющими пластинами (см. задачу 1).
Большинство электронов, увлекаемых полем, ударяется в пластину В, но некоторые проходят через отверстие, образуя пучок в области Z. Вертикальное электрическое поле, создаваемое пластинами Рz и P'z, отклоняет этот пучок вниз. В области Z действует и магнитное поле, перпендикулярное плоскости страницы; это поле также отклоняет пучок электронов вниз. Рассмотрим теперь действие таких же полей на положительные ионы, проходящие через отверстие в пластине А в область X.
а) Между пластинами Рx и P'x действует такое же электрическое поле, как между пластинами Рz и P'z. Куда это поле будет отклонять положительный пучок — вверх или вниз?
б) В области X действует такое же магнитное поле, как и в области Z. Куда это поле будет отклонять положительный пучок — вверх или вниз? Почему?
в) Электроны, проскакивающие область Z, были образованы вблизи пластины А и прошли в области Y расстояние, на котором происходит полное падение напряжения V электронной пушки (как это часто делается в подобных трубках). Предположим также, что некоторые положительные ионы с одинаковым по величине зарядом +е стартуют вблизи пластины В и появляются в области X, тоже испытав действие полного падения напряжения V. Приложение одинаковых электрических полей между пластинами Р и Р' к потокам в области X и Z будет давать одинаковые отклонения обоих потоков и не будет показывать разницы в массах частиц. Объясните, почему отклонения должны быть равными. (Не делайте подробных расчетов. Придумайте качественное объяснение при рассмотрении горизонтальных скоростей или аргументируйте объяснение приближенными алгебраическими оценками.)
г) 1. Если два вида частиц имеют одинаковые заряды и проходят через одну и ту же область пространства с падением напряжения V, все они имеют одинаковую кинетическую энергию
1/2 Mvi2 = V∙e для ионов,
1/2 Mve2 = (-V)∙(-e) для электронов.
Теперь предположим, что одинаковое магнитное поле Н действует на оба потока (в областях X и Z). Сила, действующая на частицу с зарядом Q, движущуюся со скоростью и, определяется выражением
F = 10-7(Qv)(H).
Каждый поток будет двигаться по круговой траектории. Сравните кривизну траекторий, записывая отношение радиусов Ri/Re в зависимости от М и m.
2. Если отношение М/m составляет около 26 000 (как это имеет место для ионов азота) и определенное магнитное поле искривляет пучок электронов в окружность радиусом 0,05 м, то какой радиус будет иметь ионный поток?
д) Если некоторые частицы стартуют с середины области Y и проходят путь, где падение потенциала составляет только 1/2 V, каково будет их отклонение в
1) электрическом поле?
2) магнитном поле?
Как видно из задачи 1, электрические поля сами по себе не дадут нам возможности сортировать движущиеся ионы по массам. Дело в том, что электрическое поле уже накладывалось вдоль потока посредством ускоряющего напряжения пушки; повторное использование электрического поля, действующего поперек потока, не даст новой информации. Но при наложении магнитного поля на пучок, созданный действием напряжения пушки, мы можем сортировать ионы в пучке. Если мы приложим высокое напряжение между пластинами А и В (фиг. 30) и приложим магнитное поле к пучку в области X, мы получим отклонения, пропорциональные значениям е/Мv.
При анализе положительных пучков повышаются требования к высокому вакууму, и нужны значительно более сильные поля, чем при анализе пучка электронов. Задача 1, д) показывает, что ионы, которые стартуют в различных точках области Y, будут иметь различные энергии; таким образом, даже ионы с одинаковым значением е/М будут давать различные отклонения. Однако мы можем создать приспособления для получения потока ионов с равными скоростями или с равными кинетическими энергиями, и тогда отклонения ионов позволят проводить прямые измерения е/М для каждого сорта ионов,
Первые измерения
Грубые измерения перед самым началом XX века начали показывать, что частицы в положительных пучках имеют массы атомов и молекул (если их заряд +е или несколько единиц +е). В 1910 г. Дж. Дж. Томсон пропустил тонкий пучок через электрическое и магнитное поля, подобранные таким образом, чтобы ионы давали определенные метки для каждого значения е/М, несмотря на различие в их скоростях. Его измерения показали следующее (см. таблицу в гл. 36).
Водород из разрядной трубки обнаруживает значение е/M около 108 кулон/кг, такое же, как для ионов водорода при электролизе. Метка ионов Н++ с удвоенным значением отношения ЗАРЯД/МАССА не появляется; таким образом, нет никаких признаков того, что атом водорода может терять более чем один электрон. Однако Томсон нашел половинное значение, которое он правильно интерпретировал как принадлежащее ионизованным молекулам водорода, H2+. В разрядной трубке с кислородом Томсон регистрировал ионы с е/М в 1/16 от е/М для ионов Н+, по-видимому, ионы О+. Он также регистрировал удвоенное значение указанной величины, которую можно отнести к О++. Записывая значения е/М, Томсон мог сравнивать между собой массы атомов многих элементов, или, как химики давно называли их, «атомные веса». Таким образом, ион О оказался тяжелее иона Н в 16 раз.
Помещая в разрядную трубку газ метан, СН4, Томсон получил метки для масс 1, 12, 16, принадлежащих Н+, С+, ионизованным молекулам метана СН4+ и даже нестабильным группам, таким, как СН2+ — не известным в то время химикам свободным радикалам.
Ион ртути мог нести до восьми «+» зарядов.
Эти данные согласовались с данными для ионов и атомов, полученными ранее при проведении электролиза и исследовании химических свойств.
Но затем возник изумительный сюрприз: газ неон в трубке дал странную запись. Атомный вес неона был хорошо известен и составлял 20,2, но запись показала две метки: одну для ионов с массой в 20 раз тяжелее иона водорода, другую, тусклую метку для массы 22.
Задача 2. Решающий опыт
Томсон был уверен, что метка «20» относится к ионам неона, так как интенсивность ее была пропорциональна количеству неона в смесях газов, которые он исследовал. Слабая линия 22 должна относиться к более тяжелой разновидности атомов неона или должна быть отнесена к странному соединению неона с примесным водородом в трубке — NeH2. Как поставить простой решающий опыт для выбора между этими двумя возможностями?
Изотопы
Существуют два неона, два атома-брата у одного и того же элемента. Один из них на 10 % тяжелее другого. Они были названы изотопами. Этот термин уже был введен для обозначения подобных атомов при исследовании радиоактивности.
Масс- спектрографы
После открытия изотопов неона возникло широкое поле деятельности для разделения атомов. Одна хитроумная схема за другой изобретались для «фокусировки» потоков положительных лучей в четкие тонкие метки, которые могли обеспечить точные измерения масс атомов.
Это был удивительный метод определения масс атомов различных веществ. Трудности в выделении отдельных элементов не существовали! Каждый тип атомов дает свои метки, и мы можем даже оценить пропорции составляющих вещество атомов по плотности меток. Правда, некоторые молекулярные группы также дают метки, но опытный масс-спектрографист может расшифровывать масс-спектры так же легко, как врач расшифровывает состав крови.
Сначала ионы фокусировались на экран, покрытый специальным составом, который светился, когда ионы ударялись об экран. Затем были использованы фотопластинки или фотопленки — после проявления темные метки появлялись в тех местах, в которые попадали ионы (фиг. 31).
Фиг. 31. Вид спектра масс.
(Эскизы с масс-спектрограмм на фотопластинке. Метка для каждой ионной массы на оригинале серая или черная. Здесь они показаны только черным цветом.)
а — спектр масс, записанный Астоном от газообразного брома (80 и 81) и двуокиси углерода (44), введенных в разрядную трубку. СО2 поставляет ионы, которые дают метку 44 (СО2+), 22 (СО2++) и 28 (СО+). Бром поставляет ионы, которые дают метки 39,5 и 40,5 (Вr++), а также 26,3 и 27 (Br+++). В разрядной трубке имеются также следы Н, Cl, S и др. элементов, и они поставляют ионы, которые дают метки 35 и 37 (Сl+), а также 36 и 38 (НСl) и др. (из книги: F. W. Astоn, Mass Spectra and Isotopes, E. Arnold Ltd, London).
б — спектр масс, полученный Демпстером. Ионы кадмия (Cd+) были получены методом «горячей искры», проскакивающей между кадмиевыми электродами в вакууме. Фотография показывает метки всех изотопов и их относительное содержание (из: Рrос. Am. Phil. Soc. 75 (1935)).
Во всех этих опытах получали метки для каждой атомной массы. Расположение меток на полосе фотопленки сильно напоминает оптические линейчатые спектры, получаемые от светящегося газа. Это подсказывает подходящее наименование — масс-спектрограф для прибора, который дает развернутую запись масс атомов. Мы иногда называем этот прибор масс-спектрометром, если он предназначен для очень точных измерений. Можно заметить, что оптические спектры различных элементов отличаются друг от друга, но спектры различных изотопов одного элемента различаются несущественно.
В настоящее время ионы одной массы обычно фокусируются на тонкую щель. Ионы проходят через щель и собираются на коллекторе; при разрядке коллектора возникает небольшой электрический ток, который можно усилить и зарегистрировать. Изменяя поле, можно пропускать через щель потоки с разными массами, при этом на графике возникает острый пик для каждой атомной массы. На фиг. 32 показан такой график. Рассчитанные по результатам точных измерений массы являются массами ионов. Для нахождения масс нейтральных атомов мы должны добавить к массе иона массу потерянного электрона (потерянных электронов), что легко сделать.
Фиг. 32. Запись на масс-спектрографе.
Эта запись получена М. Б. Сэмпсоном на масс-спектрографе, подобном показанному на фиг. 34. При анализе ионов стронция запись показывает, что наиболее распространенным является изотоп 88 (82 %), другие изотопы имеют массовые числа 87, 86, 84. Не видно отметки для радиоактивного изотопа стронций-90, содержание которого составляло 0,05 % от общего количества атомов стронция.
Гипотеза Проута
Открытие изотопов дало новый ответ на старую химическую загадку, заключающуюся в приблизительной целочисленности масс атомов. Столетие тому назад Проут отметил эту простую закономерность для химических «атомных весов». Принимая массу атома водорода за 1,01, получаем (используя современные величины, найденные при точных химических взвешиваниях) следующие значения атомных весов;
(Наилучшее приближение к целочисленности получается при использовании шкалы, в которой масса кислорода принята равной точно 16, чем при использовании шкалы, где за единицу принята масса водорода. В кислородной шкале масса водорода — 1,008. Специалисты-химики давно пользуются кислородной шкалой. Сейчас мы также воспользовались этой шкалой.)
Приведенный выше список — специальный подбор немногих чисел, хорошо согласующихся с гипотезой Проута. В списке Проута были более округленные величины. Целые числа встречались в этом списке слишком часто для того, чтобы это можно ыло объяснить счастливой случайностью. Проут предположил, что все атомы построены из водородоподобных блоков. Но многочисленные исключения упорно портили картину; наибольшую неприятность доставлял хлор, для которого тщательные химические измерения давали атомный вес 35,5 при каждом новом измерении.
Сорок лет спустя масс-спектрографы принесли спасение и показали, что нет атомов хлора с атомным весом 35,5, но есть смесь двух изотопов, 35 и 37, в такой пропорции, что средний атомный вес составляет 35,46.
Задача 3
В масс-спектрограмме хлора имеются также метки у чисел 36 и 38. Разумно предположить, что эти метки обусловлены другими ионами, помимо простого иона Сl+, хотя они всегда появляются при использовании хлора,
а) Существование какого иона вы можете предположить, если известно, что в приборе использовались другие газы для сравнения?
б) Как можно проверить ваше предположение на этом же приборе?
Массы изотопов
Многие элементы имеют по два и более изотопов. Массы изотопов приблизительно целочисленны по отношению к Н = 1 или O = 16. Даже кислород, атомный вес которого химики решили принять равным 16 в качестве стандарта, имеет довольно редкий изотоп с массой 17[118] (поэтому мы теперь используем определенный изотоп кислорода О16 в качестве стандарта массы 16,0000).
При более тщательном исследовании у водорода найден тяжелый изотоп с удвоенной массой, называемый теперь дейтерием[119].
Еще позднее был найден изотоп водорода утроенной массы, называемый теперь тритием. Он радиоактивен.
Конструкция масс-спектрографов
В задачах 4 и 5 обсуждаются конструкции существующих масс-спектрографов.
Примеры масс-спектрографических результатов
Здесь приведено несколько примеров, отобранных для иллюстрации смесей изотопов, найденных в природе. Массы даны с округлениями. Результаты прецизионных измерений будут обсуждаться в следующем разделе. Точные значения отличаются от приведенных целых чисел на величины до 0,1. Принятая шкала: масса атома О16 = 16,00000.
Задача 4. Масс-спектрограф Бейнбриджа с селектором скоростей
Этот прибор, предложенный Дж. X. Бейнбриджем, сначала выделяет ионы с определенным значением скорости, а затем производит определение е/М с помощью магнитного поля (фиг. 33). Электрическое поле в области Y создает скопления ионов. Сильное электрическое поле между электродами А и В движет поток ионов через щель S, ионы обладают широким набором скоростей. Ионы проходят узкий коридор между пластинками Р и Р', к которым приложена постоянная разность потенциалов. В объеме коридора действует также постоянное магнитное поле, напряженность которого перпендикулярна сти чертежа. Электрическое поле между Р и Р' смещает в сторону ионы, движущиеся вдоль коридора вниз. Магнитное поле ориентировано так, что оно смещает ионы в противоположную сторону. Таким образом, ионы в потоке должны проходить сквозь скрещенные электрическое и магнитное поля. Пройти вниз по всему коридору и успешно достигнуть щели S' смогут только те ионы, для которых действия электрического и магнитного полей взаимно погашаются. Показать, что все ионы с различными значениями е и М, но с некоторой одинаковой скоростью могут пройти селектор, проведя следующие расчеты:
Фиг. 33. Масс-спектрограф типа Бейнбриджа с селектором скоростей (см. задачу 4).
а) Если разность потенциалов между Р и Р' составляет V в, а расстояние между пластинками равно d м, то напряженность поля между пластинками будет (V/d) в/м. С какой силой будет действовать это поле на ион, имеющий заряд е кулон и движущийся со скоростью u м/сек? (См. гл. 33.)
б) Если напряженность однородного магнитного поля равна Н, то сила, действующая на движущийся заряд, определяется уравнением F = 10-7(Qv)∙(H). С какой силой будет действовать магнитное поле на движущийся ион?
в) Рассчитайте скорость ионов, которые могут пройти коридор до щели S'. Те ионы, которым удалось пройти через вторую щель (S''), выходят в область W, где нет электрического поля. Но то же самое однородное магнитное поле с напряженностью Н действует во всей области W. (Вектор напряженности перпендикулярен плоскости чертежа.)
г) Предскажите траекторию в области W для пучка ионов с одинаковой массой М и скоростью и, найденной выше.
д) Где должен фокусироваться такой пучок, выходящий из S' в виде узкого веера?
е) Где будет фокусироваться пучок, если ионы имеют ту же выделенную скорость v, что и в пункте д), но удвоенную массу 2М?
ж) Набросайте эскиз установки и укажите в нем подходящее место для фотопленки, которая должна регистрировать сфокусированные пучки ионов с массами М, 2М, 3М и т. д., движущиеся с выделенной скоростью v.
Задача 5. Масс-спектрограф с моноэнергетическим ионным источником
В этой конструкции (фиг. 34) все ионы с различными массами проходят через область с одним и тем же падением напряжения. При этом все ионы, с единичным зарядом +е будут иметь одинаковую кинетическую энергию (иона с удвоенным зарядом +2е будут получать удвоенную кинетическую энергию, но метки этих ионов можно отличить от остальных). Ионная пушка имеет три части: 1) маленькая электронная пушка для бомбардировки газа с целью получения ионов. При этом попутно совершается работа расщепления молекул газа на отдельные атомы; 2) в области между пластинкой В и сеткой G ионы осторожно направляют в сторону сетки малой разностью потенциалов между В u G. 3) Ионы дрейфуют через сетку и встречают сильное электрическое[120] поле с большой разностью потенциалов V между G и диафрагмой пушки М. Таким образом, все ионы, двигающиеся из области позади G, получают практически одинаковую кинетическую энергию, так как они проходят всю область падения напряжения пушки V в.
Предположим, что поток, выходящий из пушки, содержит ионы с массой М кг и зарядом +е кулон. Предположим также, что эти ионы попадают в однородное магнитное поле с напряженностью Н, перпендикулярной их траектории. При этом их траектория превращается в окружность радиусом r.
Фиг. 34. Масс-спектрограф с моноэнергетическим ионным источником и с фокусировкой магнитным полем (см, задачу 5).
а) Объясните, почему кинетическая энергия каждого иона, равная 1/2 mv2, должна составлять eV дж.
б) Покажите, что радиус r круговой траектории должен описываться выражением
Примечание. Сила, действующая на заряд Q, движущийся со скоростью v через магнитное поле с напряженностью Н, составляет
F = 10-7(Qv)∙(H).
в) Предположим, что V и Н остаются постоянными и имеется два вида ионов с одинаковыми зарядами, но различными массами — одна масса вдвое больше другой. Как будут различаться радиусы фокусирующих окружностей для этих ионов?
г) Предположим, имеются два вида ионов, масса одного из них вдвое больше массы другого, как в пункте в). Предположим, что ускоряющее напряжение V изменено, а Н осталось постоянным. Во сколько раз пришлось изменить V, чтобы тяжелый ион фокусировался при том же радиусе, что и легкий ион?
В задаче 5, в) предполагается, что фотопленка, располагающаяся в фокусирующей области, облучается пучками ионов различных масс и при проявлении демонстрирует четкие метки для каждого значения массы.
В задаче 5, г) потоки ионов с различными массами последовательно попадают в одну и ту же выходную щель при изменении ускоряющего напряжения. Ионы попадают на коллектор позади щели; ионный ток усиливается и показывает относительное содержание ионов данной массы. График зависимости ионного тока, ПРОХОДЯЩЕГО ЧЕРЕЗ ЩЕЛЬ, ОТ УСКОРЯЮЩЕГО НАПРЯЖЕНИЯ, показывает распределение ионов по массам. Типичный график показан на фиг. 32.
Химия и массы атомов
В давних измерениях, которые мы описали, массы атомов сравнивались с массами, полученными при химических взвешиваниях; но это было взвешивание огромных количеств атомов в предположении, что все атомы одного элемента одинаковы. В течение более чем столетнего бурного развития химии изотопы никогда себя не проявляли. Все изотопы одного элемента имеют одинаковые химические свойства. Свидетельство этого — постоянство содержания изотопов хлора (35 и 37), что дает постоянный «атомный вес» 35,46 в самых различных весовых определениях хлора из различных источников, из различных процессов, в которых хлор участвовал, прежде чем он был выделен и взвешен.
За полстолетия до исследования ионов в газах были хорошо измерены заряды атомов, переносящих ток в растворах солей. Продукт, получаемый при электролизе, легко взвесить, можно также измерить полную величину перенесенного заряда и таким образом найти точное значение е/М для каждого типа ионов. Когда первые измерения с ионами в газах дали подобные же значения е/М, появилось предположение, что одинаковые атомные частицы несут одинаковый заряд и в газах, и в жидкостях, и это предположение казалось правильным.
Но измерение е/М при электролизе производится взвешиванием больших количеств веществ, и для каждого элемента находятся усредненные значения отношения
ЗАРЯД е / СРЕДНЕЕ ЗНАЧЕНИЕ М ДЛЯ ИОНОВ ДАННОГО ЭЛЕМЕНТА
Усреднение не создавало причин для беспокойства, пока все атомы одного элемента считались идентичными — очевидное допущение, которое считалось безусловной истиной при рассмотрении атомов во всей химии XIX столетия. Даже в начале 1900-х годов идентичность атомов казалась правильным представлением, исключение составляли некоторые проблемы специальной области — исследования радиоактивности. Конечным продуктом различных рядов распада (генеалогических деревьев) является свинец; стало казаться, что различные ряды, которые были открыты, оканчиваются атомами свинца с немного различающимися массами. Был и другой намек, связанный с поведением некоторых промежуточных членов рядов, которые вели себя подобно свинцу, но определенно имели необычные массы, — мы теперь знаем, что это был радиоактивный свинец.
Термин изотопы напрашивался для таких атомов одного элемента с различающимися (слегка) массами. Однако этот намек о неравенстве масс был отнесен к числу специальных представлений учения о радиоактивности, и идентичность атомов оставалась правилом вплоть до анализа положительных лучей, показавшего, что атомы являются изотопами.
Присутствие таких «неравных двойников» явилось как неожиданным, так и полезным в химии. Теперь, когда мы знаем о существовании изотопов и можем разделять их, используя различия физических свойств, мы применяем изотопы, как индикаторы в химических реакциях. Дейтерий, тяжелый изотоп водорода, особенно полезен как свидетель, показывающий пути атомов водорода при синтезе органических молекул.
Изотопы могут быть разделены различными физическими методами (см. описание диффузионного метода в гл. 25 и 30). В случае необходимости мы можем использовать масс-спектрограф для разделения изотопов и сбора точно известных количеств каждого иона в местах, где они фокусируются. Такой метод использовался для выделения легкого изотопа урана U235 в ранних опытах с делящимися материалами. Сейчас разделенные изотопы некоторых элементов широко применяются в качестве меченых атомов.
Маленькие несоответствия
Открытие изотопов принесло новое признание гипотезе Проута. Однако очень точные измерения на масс-спектрографах, в которых ионные потоки собираются в очень острых фокусах, показывают, что массы атомов не являются точно целыми числами (в какой бы шкале они ни выражались). Отклонения выглядят незначительными до тех пор, пока мы не переведем их в эквивалентную разность энергий, используя формулу Е = mс2. А вот тогда мы обнаружим, что масс-спектрограф смог обеспечить точные измерения, необходимые для расчетов при ядерных превращениях.
Выделение энергии при делении и синтезе. Примеры использования точных значений масс атомов
Исследование и использование соотношения Е = mс2 в ядерной физике будет описываться в гл. 43. Между тем если вы пожелаете принять кое-что на веру, то сможете увидеть приложение этой формулы к точным масс-спектрографическим измерениям. Мы попытаемся рассмотреть два упрощенных примера из ядерной физики — один из них реакция синтеза, другой — реакция деления.
Расчеты не являются абсолютно точными, а результаты не имеют практического значения. Однако примеры хорошо иллюстрируют характер энергетических расчетов.
Мы используем следующие значения масс[121] из современных масс-спектрографических данных (за счет которых можно даже повысить на один-два порядка точность расчета):
Таблица масс атомов
(в шкале, где масса атома кислорода принята за 16,0000)
Н1 (обычный водород)… 1,0081
Не4 (обычный гелий)… 4,0039
Ag107 (самый легкий изотоп серебра)… 106,939
Хе128 (один из самых редких изотопов ксенона)… 127,944
U235 (делящийся изотоп урана)… 235,116
Синтез
Предположим, что четыре атома водорода могут соединиться вместе и образовать один атом гелия. Осуществить такую реакцию химическими методами невозможно. Превращения элементов, по-видимому, происходят в очень горячих звездах. Излучение Солнца, по всей вероятности, поддерживается ядерными реакциями, происходящими по схеме кругового цикла, но подобные реакции невозможны при обычных земных температурах.
Предположим, мы хотим получить около 4 кг гелия. Тогда нам потребуется четыре порции водорода, по 1 кг каждая. По точному расчету возьмем
4 x 1,0081 кг вещества —> 4,0039 кг вещества.
Предположим, и это будет правильно, что разность 0,0285 кг составляет массу энергии, освобождающейся в виде излучения, кинетической энергии и т. д. Доверяя соотношению Е = mс2, мы будем ожидать выделения энергии:
ΔЭНЕРГИЯ = (Δm)∙с2 = 0,0285 кг∙(3,0∙108 м/сек)2 ~= 2,6∙1015 дж ~= 600 000 000 000 больших калорий.
Сравним это значение с «молекулярным синтезом» атомов водорода и кислорода при образовании воды:
ХИМИЧЕСКАЯ РЕАКЦИЯ
2Н2+ О2 —> 2Н2О
4 кг водорода + 32 кг кислорода —> 36 кг воды с выделением 140000 больших калорий.
При использовании того же самого количества водорода (соединяющегося с кислородом воздуха) выделение энергии в четыре миллиона раз меньше.
Деление
Предположим, что атом U236 делится на два более легких атома — атом серебра Ag101 и атом газа ксенона Хе128 — и что другие частицы не появляются. (Большинство событий деления сопровождается освобождением нейтронов, поэтому, хотя ксенон и серебро и являются возможными продуктами деления, это — искусственный пример. Однако он подходит для оценки освобождающейся энергии.) Предположим, превращению подвергается 235 кг урана:
ЯДЕРНОЕ ПРЕВРАЩЕНИЕ
U235 —> Ag107 + Хе125
235,116 кг —> 106,939 кг +127,944 кг
235,116 кг вещества —> 234,883 кг вещества
Принимая E = mc2, мы ожидаем освобождения энергии:
ΔЭНЕРГИЯ = (Δm)∙с2 = 0,233 кг ∙ (3,0∙108 м/сек)2 ~= 2∙1016 дж ~= 5 000 000 000 000 больших калорий.
Сравним это с химическим разрушением молекул тринитротолуола (ТНТ). При взрыве 235 кг ТНТ освобождаемая энергия составляет около 850 000 больших калорий. Молекула ТНТ легче атома урана на 3 %. Таким образом, одна молекула ТНТ при взрыве дает выход энергии в шесть миллионов раз меньше, чем один атом урана (по приведенной выше оценке),
Иголка в стоге сена. Значение прецизионных измерений
Если мы хотим знать «вес стога сена» для научных целей, не так важно, будет ли находиться в стоге иголка во время взвешивания. Но если мы захотим знать «вес иголки» и можем взвесить ее только вместе с сеном, то мы должны будем произвести взвешивание стога сена с иголкой и просто стога сена с очень высокой точностью, если хотим найти малую разность с некоторой точностью.
Снова и снова в истории науки малые разности, полученные в прецизионных экспериментах, порождают новые большие открытия: ранние астрономические записи дали возможность Гиппарху открыть прецессию точек равноденствия; страсть Тихо Браге к точным измерениям дала Кеплеру его верную 8-минутную разность, «благодаря которой…»; предельно точные измерения оптических спектров дали возможность расширить представления атомной модели Бора, и, наконец, высокая точность масс-спектрографических измерений масс атомов предзнаменовала управление энергией ядерных превращений.
Предварительные задачи к главе 39
Задача 1. Камера Вильсона, применяемая в ядерной физике
Известно, что очень маленькая водяная капля испаряется много легче, чем лужа с плоской поверхностью (или большая круглая капля). Дело здесь не только в важной роли, которую играет отношение поверхности к объему для разных капель. Известно, что большая капля или лужа, оставленные в насыщенном влагой воздухе (100 % влажности), будут сохраняться, в то время как крошечная капля испарится.
а) Покажите на эскизе испарение молекулы с ОЧЕНЬ маленькой круглой капли и сообразите, почему молекула в этом случае может улетучиваться особенно легко. (Намек: молекулы воды притягиваются друг к другу — это проявляется в поверхностном натяжении, — но это притяжение действует только на коротком расстоянии в несколько молекулярных диаметров. Это ограничение проявляется в том, что пленки нефти и т. п. имеют одинаковое поверхностное натяжение независимо от того, являются ли они толстыми, тонкими или очень тонкими, — только предельно тонкие пленки имеют меньшее поверхностное натяжение.)
б) После этого угадайте причину, по которой облако водяных капель с трудом образуется даже в пересыщенном воздухе. (Намек: каждая дождевая капля должна начинаться, как…?)
в) Обычный пыльный воздух содержит частицы пыли, к которым вода может легко прилипать. Хотя частицы и кажутся микроскопическими, они все же велики по сравнению с крошечными водяными каплями. Почему туман легче образуется в пересыщенном пылью воздухе?
г) Образец влажного пыльного воздуха помещен в цилиндр с подвижным поршнем. Поршень быстро выдергивается, и воздух расширяется. Почему образуется туман? (Заметим, что холодный воздух насыщается меньшим количеством водяных паров, чем теплый.)
д) Пыль способна формировать водяные капли; однако и в воздухе, свободном от пыли, капли могут образоваться в присутствии электрически заряженных молекул или атомов (= «ионов»). (Очевидно, что молекулы воды будут притягиваться к электрически заряженным объектам. Молекулы воды можно представить в виде продолговатых тел с «+» зарядом на одном конце и «—» зарядом на другом. Можно также представить, что внешнее поле легко деформирует молекулы, придавая им указанную выше «форму», подобно тому как магнит превращает мягкое железо в постоянный магнит.) Объясните, почему водяные капли легко образуются на ионах, несущих «+» или «—» заряд?
Фиг. 35. К задаче 1.
Простейшая камера Вильсона.
е) Мы полагаем, что атомы имеют электроны, которые можно отделять. Некоторые атомы легко теряют электрон; другие атомы легко захватывают электрон. (После потери или приобретения электронов атомы становятся «ионами».) Обычный воздух не проводит тока, но воздух становится проводником, когда в нем возникает пламя или когда через него проходят альфа-, бета-, гамма- или рентгеновские лучи. Некоторые из этих лучей представляют собой движущиеся заряженные частицы, которые оставляют след из заряженных ионов, когда они пролетают в воздухе (трек). Подобные высокоскоростные «пули» движутся слишком быстро, чтобы собирать воду на себе. Если мы хотим увидеть треки их во влажном воздухе, он должен подвергнуться быстрому охлаждению. Объясните, почему треки могут стать видимыми.
ж) Прибор, который позволяет наблюдать треки «ядерных пуль» визуально, называется камерой Вильсона. В простейшем виде камера Вильсона представляет собой стеклянный цилиндр, содержащий влажный воздух над поршнем из воды, управляемым сжатием резиновой груши. Объясните, почему следующая процедура сделает треки видимыми: 1) сжатие резиновой груши, 2) выдержка в течение некоторого времени, 3) быстрое отпускание резиновой груши; при этом появятся треки в виде линий из капелек воды.
Задача 2. [Эта задача о ионах (носителях) в газах. Они подобны ионам, которые дают красное свечение в неоновых трубках, используются в счетчиках Гейгера, вызывают электрические искры. Ответы старайтесь обосновать.]
Если в простой цепи с батареей имеется воздушный зазор, постоянный ток в цепи протекать не будет, так как воздух является изолятором — он имеет «бесконечно большое сопротивление». Однако если в зазор введено пламя, в цепи пробегает очень маленький ток. (Все токи в этой задаче являются ОЧЕНЬ маленькими, например 10-12 а.)
Если ввести в воздушный зазор или поместить вблизи него небольшое количество соединений радия, также потечет небольшой ток. Этот ток не приходит из пламени или радия. Ток появляется, когда воздух становится слабо проводящим.
Фиг. 36А. К задаче 2.
а) О чем это говорит, что могло случиться с (некоторыми) молекулами? Если препарат радия оставить у зазора, ток будет постоянным.
Если теперь увеличить напряжение (с помощью делителя напряжения или увеличения числа батарей), ток пропорционально увеличится (закон Ома) до определенной величины. При еще больших напряжениях ток достигнет постоянного значения А, которое будет сохраняться в широкой области напряжений.
б) Что, по-вашему, случается на стадии А? При значительно более высоких напряжениях ток быстро возрастает (участок В), и вскоре образуется искра.
в) Что, по-вашему, происходит на стадии В, когда батарея создает очень сильное электрическое поле в воздухе?
г) (ТРУДНЫЙ). Если давление воздуха уменьшить наполовину (плотность упадет вдвое, и длина свободного пробега удвоится), какие изменения, по-вашему, произойдут в графике и почему?
Задача 3
Если мы создадим очень большое электрическое поле, например, между двумя металлическими шариками, между ними проскочит искра,
а) Во время проскакивания искры протекает ток в цепи какого-то источника, который используется, чтобы зарядить шарики. Какие вещества несет этот ток в искре?
б) Если искровой разряд начался, он обычно продолжается, пока источник напряжения в состоянии поддерживать ток. Другими словами, если первая искра проскочила, следующие искры, как кажется, идут по проторенному пути. Объясните это.
в) Если напряжение между шариками настолько велико, что вот-вот может проскочить искра, но еще не проскакивает, туман или пламя спички часто могут вызвать появление искры. Почему?
г) Вместо пламени спички [в задаче в)] маленький кусочек радия, поднесенный к зазору, может вызвать искру. Почему?
д) Предположите, что оба шарика подсоединены к большой емкости. Емкость заряжается, а затем источник заряда отключается еще до начала искры. Искра образуется от зажженной спички. Искра с треском проскочит и иссякнет. Почему искра не будет повторяться в этом случае? (Утверждение «искра вытекла из ионов» не может считаться ответом.)
Фиг. 36Б. К задаче 3,д).
Задача 4
Когда электрический заряд подводится к проводнику неправильной формы, заряд распределяется неравномерно по всей поверхности (см. гл. 33).
а) На какой части поверхности плотность заряда будет больше и соответственно больше напряженность поля у поверхности образца?
б) В счетчике Гейгера одним из электродов является очень тонкая проволока, помещенная в центре трубки. Подумайте над причиной такого конструктивного исполнения.
Задача 5
Как известно, альфа-частицы являются заряженными атомами гелия.
а) Отклонения в магнитном и электрическом полях показывают, что они имеют значения е/М, вдвое меньшие, чем для ионов водорода, «Химические» свойства гелия с очевидностью говорят нам, что масса атомов гелия в 4 раза больше массы атомов водорода. Таким образом, вместо того чтобы говорить, что альфа-частица имеет 1/2 (е/М) по сравнению с водородом, мы можем сказать, что она имеет отношение заряда к массе 2е/4m, и считать, что ее заряд равен 2е, удвоенному заряду электрона.
б) Используя счетчик Гейгера, можно сосчитать число альфа-частиц, испускаемых маленьким образцом радия за определенное время.
в) С другой стороны, можно выстрелить таким же потоком альфа-частиц (в вакууме) в маленькую металлическую коробку, собрать заряд за то же время и измерить его (или же измерить ничтожный ток, который будет протекать при соединении коробки с землей).
1) Какую важную часть информации об атомах можно получить, сопоставляя результаты измерений б) и в)? (Заметим, что б) и в) относятся к одинаковому потоку альфа-частиц.)
2) Какую дальнейшую информацию об атомах можно получить, объединяя наблюдение и обсуждение пункта а) с ответом на предыдущий вопрос?