Глава 40. Атомы. Эксперимент и теория

We use cookies. Read the Privacy and Cookie Policy

Теория — обаятельная мать тяжелого, нудного эксперимента.

Харлан Мэйс, мл., Принстон (Из экзаменационной работы по элементарной физике, 1949 г.)

Настоящая глава представляет собой обзор атомной теории от идей греков до ранней модели атома, содержащего ядро.

Ранние представления об атомах и молекулах

Еще задолго до того, как появились реальные данные, ведущие к понятиям атомов и молекул, греческие мыслители представляли себе материю созданной из огненных движущихся частиц, названных «атомами», что означает неделимые бесконечно малые объекты, которые казались непостижимыми. Вероятно, эта картина возникла в результате действительно научных рассуждений — о движении в природе, а может быть, созданию ее благоприятствовала детская жажда определенных правил и упрощенных представлений, которые позволят считать трудный для понимания окружающий мир менее сложным, более понятным. Мы не должны презирать это убеждение в простоте природы, даже если подозреваем, что основы этого убеждения ненадежны. Современная наука построена на более взрослом представлении, что в природе все закономерно. Мы постоянно имеем дело с простыми законами, описывающими наши экспериментальные данные, и при создании теории добиваемся простоты. Первичная основа всей нашей науки может состоять из простых недоказанных положений, используемых в качестве исходных точек для сложных выводов, результаты которых затем проверяются и применяются для описания материального мира.

Представления греков об атомах были только удачными догадками, но они создали основу, облегчившую ученым будущих времен постановку вопроса о теории атома, когда экспериментальные данные были собраны и настало время для создания научных теорий[132].

Убеждение греков в возможности простого сведения природы к четырем элементам — Земле, Воздуху, Огню и Воде — развивалось в последующие века. Подобное убеждение было и у нас, подготовив тем самым к восприятию гипотезы Проута; позднее она была блестяще подтверждена с помощью масс-спектрографа. Однако как ученые мы не удовлетворены ее простотой, а обращаем внимание на небольшие отклонения от этой простоты, что ведет к новой области знаний — к представлениям об атомной энергии.

Доказательство существования атомов и молекул, 1700–1900 гг.

Поскольку химия развивалась из алхимии, она поощряла идею существования атомов как основных строительных кирпичей, из которых образованы молекулы и соединения. Химические соединения могут быть расщеплены на составляющие элементы, пропорции которых можно измерить прямым взвешиванием. Опыт показывает, что данное соединение всегда имеет те же самые пропорции составляющих — результат, который легко «объясняется» с помощью допущений: а) что каждый элемент имеет свой собственный сорт идентичных атомов и б) что сложные молекулы состоят из идентичных групп таких атомов.

Например, соляная кислота всегда разлагается на водород и хлор в пропорциях 1 к 35,5 по массе. Мы воображаем все водородные атомы подобными с массой М и все атомы хлора подобными с массой 35,5 М, а также все молекулы соляной кислоты подобными, с держащими атом водорода и атом хлора, соединенные вместе, с массой М + 35,5, М или 36,5 М. Принимая эту картину, мы должны ожидать, что все анализы соляной кислоты дадут те же пропорции 1 к 35,5, и это так и есть. Однако этот факт не имеет ценности для формирования картины строения молекул («теории»?), действительно объясняющей подобные наблюдения, так как на самом деле картина создается в результате наблюдений. Химический анализ подсказывает нам две другие мысли:

1. Одинаковые элементы дают совершенно различные соединения: в подобных случаях пропорции в одном соединении очень просто связаны с пропорциями в другом соединении. Например, водород и кислород соединяются, образуя воду, в пропорциях 2 к 16 по весу. Они также соединяются в пропорции 2 к 32, образуя другое соединение. Эти два соединения в химических сокращениях обозначаются как Н2О и Н2О2.

2. Те же самые относительные значения масс должны использоваться для атомов элементов во всех соединениях, которые они образуют в сложных молекулах, состоящих более чем из одного атома, скажем из двух или трех. (Например, мы можем обозначить массы атома водорода, атома кислорода и атома хлора как 1, 16, 35,5. Эти массы годятся для всех соединений, где есть Н, или О, или Сl, таких, как НСl, Н2О, Н2О2, НСlO4.) Точно так же при строительстве из детского конструктора все сооружения состоят из нескольких типов одинаковых деталей. Подобные очевидные соображения поддерживали ранние химические представления об атомах и молекулах; факты легко понимались в терминах атомов и молекул, но не давали доказательства существования атомов. Кинетическая теория газов, которую начал продумывать Ньютон и затем развили Джоуль и другие, показала, что представление о движущихся упругих молекулах может «объяснить» закон Бойля и дает другие предсказания, хорошо согласующиеся с экспериментом. Это снова поддержало идею о существовании молекул, но опять-таки не доказывало их существования. И все же представление о молекулах облегчало размышления о свойствах газов.

Казалось, что броуновское движение делало представление о движущихся молекулах в газах и жидкостях действительно реальным. Наблюдатели ощущали себя созерцающими едва ли не молекулярные бомбардировки. Допуская в кинетической теории представление о равнораспределении энергии, можно было использовать измерения броуновского движения для оценки масс молекул газа. Полученные значения масс были невероятно малыми и составляли

1/300 000 000 000 000 000 000 000 000 кг

для молекулы водорода. (Большие значения масс получены для других молекул. Их можно легко оценить по результатам химических взвешиваний.)

Между тем экспериментальные данные, полученные при изучении электролиза, приводили к представлениям о заряженных ионах в растворах, способных переносить ток при наложении электрического поля. Если все ионы одного элемента состоят из идентичных атомов или групп атомов, то явление электролиза показывает, что электрические заряды всех ионов должны быть одинаковыми. Каждый ион данного вида должен иметь один и тот же самый заряд. Часть ионов имеет заряд «+», часть «—», а некоторые виды ионов имеют удвоенные или утроенные заряды; кроме того, любые заряды любых ионов должны быть кратны некоему универсальному единичному заряду. Таким образом, представления об «атомах» электрического заряда соединились с представлениями об атомах век тому назад.

Атомные веса и атомные номера

В прошлом веке химики взвесили атомы многих элементов и создали каталог их свойств. При этом об абсолютных массах атомов можно было лишь смутно догадываться, но относительные массы были точно измерены с помощью химического разделения и взвешивания. Эти массы в шкале, где масса атома водорода принята за 1, были названы атомными весами (А)[133].

Химики, люди профессионально систематичные, расположили свои химические элементы точно по порядку возрастания атомных весов: водород — 1,0 [гелий, открытый позже, — 4,0], литий — 6,9, бериллий — 9,0, бор — 10,8, углерод — 12,0, азот — 14,0, кислород — 16,0, фтор — 19,0 и т. д. Затем они пронумеровали свои элементы по порядку: водород — № 1, гелий. — № 2, литий — №. 3 и т. д. Эти порядковые номера были названы атомными номерами и стали обозначаться буквой Z. Каждый из них составляет примерно около половины соответствующего атомного веса[134].

Гипотеза Проута

Появилась новая догадка, что даже атомы, основные строительные кирпичи вещества, сами составлены из групп простейших строительных блоков — из атомов водорода (Проут). Целочисленность атомных масс находилась в соответствии с догадкой Проута. Целочисленность встречается слишком часто, чтобы быть чисто случайной. Примеры: водород — 1, углерод — 12, кислород — 16. Однако были и досадные исключения. Например, хлор, атомный вес которого был тщательно измерен, имел дробный атомный вес 35,5; это же имело место для меди — атомный вес 63,6.

Таким образом, гипотеза Проута была отброшена, чтобы снова возродиться в нашем веке после открытия изотопов. Мы знаем теперь, что хлор имеет 2 сорта атомов с относительными массами 35,0 и 37,0. Обычный газообразный хлор является смесью этих атомов. Независимо от источника, откуда был взят хлор, смесь состоит из одинаковой пропорции двух близнецов хлора. Так как близнецы химически неразделимы, химики были уверены, что они имели дело с одним хлором с атомным весом 35,5.

Размеры атомов

Размеры атомов, если их представить в виде круглых твердых тел, были приближенно известны в прошлом веке: диаметр атома оценивался в несколько А° (10-10 м). Диаметр может быть оценен несколькими путями.

1. Оценка средней длины свободного пробега (ДСП) при определенных давлениях в газах дает «диаметры» сталкивающихся молекул, или, точнее, хорошее приближение к ним. Значение ДСП можно оценить из результатов измерений внутреннего трения в газе. (Конец XIX столетия.)

2. Измерение поверхностного натяжения тонких пленок масел давало оценку размеров длинных молекул органических соединений. (Конец XIX столетия.)

3. В нашем веке мы получили более определенные оценки. Зная массы отдельных атомов (например, из наблюдения броуновского движения), мы можем рассчитать число их, например, в твердом бруске известного размера. По этому числу можно рассчитать среднее расстояние между отдельными атомами. Применительно к твердому телу мы будем называть это расстояние «диаметром» атома. Более надежные данные для подобных расчетов были получены объединением результатов измерений е/М для ионов с величиной е из опытов Милликена.

Во всех этих оценках была значительная неопределенность; кроме того, некоторые из этих оценок относились к атомам, другие — к молекулам, являющимся группами атомов. И все-таки оценки определенно указывали на диаметр около 10-10 м для атома и несколько больше для молекулы. В нашем веке эти оценки были подтверждены измерением с помощью рентгеновских лучей расстояний между слоями атомов в кристалле.

Строение атомов, 1890–1910 гг.

К концу прошлого века были открыты и исследованы катодные лучи и положительные лучи. В разрядной трубке, содержащей газ при низком давлении, сильное электрическое поле создает 2 потока частиц:

1. Катодные лучи. Кажется, что они образуются вблизи электрода, соединенного с минусом батареи. Они проходят через трубку и могут проскочить через отверстие в положительном электроде, как поток заряженных частиц. Отклонения в электрическом и магнитном полях показывают, что они являются отрицательно заряженными частицами, движущимися очень быстро и имеющими одинаковое для всех них elm независимо от вида газа.

2. Положительные лучи. Они идут в противоположном направлении и могут проходить через отверстие в отрицательном электроде. Отклонения в полях показывают, что они являются положительно заряженными, имеют высокие скорости и различные значения е/М, во много раз меньшие, чем e/m для катодных лучей.

Мы называем отрицательные частицы катодных лучей «электронами». Мы получаем те же самые электроны с тем же значением e/m во многих процессах. Они могут испаряться из раскаленных нитей, выбиваться из металлов светом, вырываться из атомов рентгеновскими лучами. Они также испускаются некоторыми радиоактивными атомами (бета-лучи). Их e/m в 1840 раз больше, чем е/М для ионов водорода при электролизе. Мы догадываемся (на основании серьезных косвенных доказательств), что заряд е имеет одно значение и для электронов, и для ионов водорода в газе или растворе и, следовательно, что электроны имеют массу, близкую к 1/1840 массы атома водорода. Электроны кажутся универсальными одинаковыми составляющими разных атомов, довольно легко отделяющимися при бомбардировке атомов и в других процессах.

Частицы положительных лучей представлялись остатками атомов после потери ими одного или нескольких электронов. Их е/М имеет то же значение, что и для соответствующих ионов при электролизе. И на самом деле положительные лучи есть быстро движущиеся ионы. Они могут быть группами атомов или единичными атомами и могут иметь несколько «+» зарядов (например, Н++, О++, Н2О+, СH3+).

Первоначальная картина атомной структуры содержала две эти составляющие. Для сохранения стабильности системы электроны представлялись втиснутыми в большой положительно заряженный шар и выглядели наподобие изюминок в пудинге. Это была модель, предложенная Дж. Дж. Томсоном и общепринятая в начале нашего века: массивный положительный «пудинг» 10-10 или более в диаметре с довольно маленькими, легкими отрицательными электронами, вставленными в него в количестве, как раз достаточном, чтобы сделать «пудинг» нейтральным. Подобная картина объясняла эффекты, наблюдавшиеся в разрядной трубке, и позволяла легко понять, почему очень быстрые частицы, подобные альфа- и бета-лучам, могли проходить прямо через вещество. Они проходили прямо через «пудинг», никогда не сталкиваясь с объектами достаточно большой массы, имеющими достаточно большой заряд для того, чтобы вызвать сильные отклонения.

Так же как археолог производит реконструкцию из осколков, Томсон и другие создали атомную модель из кусков разбитых вдребезги атомов, найденных в электрической разрядной трубке. Однако такое простое воссоединение составляющих поставило серьезные вопросы. Отрицательные электроны не могли бы оставаться свободно лежащими снаружи положительного остатка, они были бы втянуты внутрь огромными силами, действующими на таких маленьких расстояниях; они должны были бы проваливаться внутрь положительного остатка. Нельзя было создать воображаемую модель из «+» и «—» частиц, удерживающих друг друга в равновесии, при существовании закона обратных квадратов для сил, действующих между частицами. Электрические притяжения и отталкивания в принципе могли бы удерживать их в равновесии, но образование при этом было бы нестабильным — любые малые нарушения должны были углубляться и вести к разрушению системы. (Школьник, проводящий опыты с магнитами, может заставить один из них какое-то мгновение плавать в воздухе, но этот плавающий магнит скоро свалится в сторону, если только школьник не приложит к нему силу, не подчиняющуюся закону обратных квадратов, например своими пальцами или деревянными подпорками.) Ирншоу показал, что такая нестабильность неизбежна. Любая совокупность покоящихся тел, действующих друг на друга только силами, подчиняющимися закону обратных квадратов, — электрические заряды, магниты, притягивающиеся массы, — находится в неустойчивом равновесии. Он вывел теорему, показывающую это из уравнения 2V = 0 — математической записи закона обратных квадратов. Теорема Ирншоу не относится к системам, движущимся с ускорением, например, к электронам, вращающимся подобно планетам на орбитах, но предположение о таком движении порождало другое серьезное возражение. Электрон, бегающий по орбите, имеет ускорение v2/r. Хорошо известно, что при движении зарядов с ускорением должны излучаться электромагнитные волны. Следовательно, вращаясь на орбите, электрон должен излучать, терять энергию, и его орбита стянется к центру за ничтожную долю секунды. Первые опыты в области радио показали, что если заряды ускоряются (при протекании переменных токов в радиоантеннах), то волны излучаются. Свет, относительно которого известно, что он по существу является радиоволнами с очень короткими длинами волн, по всей вероятности, излучается электронами, ускоряющимися где-то в атоме. Атомы иногда могут излучать свет, представить же их излучающими непрерывно мы не можем — они должны были бы скоро прекратить свое существование. Для обхода этой трудности Томсон представил электроны встроенными в положительный «пудинг» и предположил, что они связаны загадочными силами, не подчиняющимися закону обратных квадратов и обеспечивающими устойчивость атома.

Однако к 1910 г. эта картина перестала быть удовлетворительной. Альфа-частицы, использовавшиеся как снаряды для исследования структуры атома, дали результаты, которые не могли быть объяснены моделью атома в виде пудинга. Резерфорд предложил новую модель атома, почти пустого, с крошечным атомным ядром, окруженным электронами, движущимися по орбитам — и ничего не говорящую о трудной проблеме излучения электрона.

Рассеяние альфа-частиц и атом Резерфорда, 1910–1915 гг.

Поток альфа-частиц может насквозь простреливать тонкие слои, например фольгу из золота. Но некоторые из альфа-частиц отклоняются от прямого пути на небольшие углы, скажем 5 или 10°. В редких случаях альфа-частицы отклоняются на большие углы — на 60 или на 80°, а в очень редких случаях отклоняются на очень большие углы, например на 150°. Вы можете видеть такие случаи в камере Вильсона — будет наблюдаться «вилка» очень редкой формы.

Резерфорд считал экспериментально относительное число случаев рассеяния на большие углы и увидел, что модель атома Томсона не согласуется с тем, что большие отклонения случаются редко. Если «пудинг» представляет собой твердый объект, то все альфа-частицы должны отклоняться. Если атом — очень рыхлый объект, то все частицы должны идти прямо. Отскакивание назад может произойти при столкновении с чем-то тяжелым (с массой, большей, чем у альфа-частицы, а было известно, что она являлась заряженным атомом гелия), и при этом должны были действовать большие силы отталкивания. Резерфорд предположил, что эти силы могут возникать при действии обычного закона обратных квадратов в процессе отталкивания между зарядом альфа-частицы и зарядом положительной части атома золота. Если это так, альфа-частицы должны приближаться к положительному заряду на расстояния, намного меньшие, чем 1 или 2 А° («размер атома»), чтобы испытать действие сил, способных замедлить их и отбросить назад. Далее, необходимо предположить, что «+» заряд атома золота не экранирован действием собственных отрицательных электронов. Таким образом, Резерфорд предложил новую модель атома: чрезвычайно малое положительно заряженное ядро, в котором сконцентрирована почти вся масса атома, и определенное число электронов, расположенных далеко от ядра и вращающихся на орбитах наподобие планет, вращающихся вокруг Солнца. По Резерфорду, следовало, что

— атом водорода имеет ядро с элементарным зарядом +е и внешний электрон с зарядом — е;

— атом гелия имеет ядро с удвоенным зарядом +2е и два внешних электрона, каждый с зарядом — е;

— атом лития имеет ядро с зарядом +3e и три внешних электрона и т. д.

Такую запись можно продолжать для других элементов периодической системы. По Резерфорду, Z-й атом с атомным номером Z, определяющим место элемента в периодической системе, будет иметь ядро с зарядом +Ze и Z внешних электронов.

Затем Резерфорд поставил следующие математические вопросы:

«1. Если альфа-частица с «++» зарядом выстреливается прямо в атом, какую форму должна иметь траектория альфа-частицы в области, занятой электронами, и вблизи ядер?

2. Если именно такие атомы находятся в тонкой золотой фольге, как должны быть распределены альфа-частицы по направлениям после ударов альфа-частиц о фольгу?

Примем закон обратных квадратов для сил отталкивания между альфа-частицами и сердцевиной атома. Предположим, что сердцевина атома золота несет заряд +Ze».

Математический аппарат дает ясные предсказания:

1. Траектории должны иметь гиперболическую форму[135] (для отталкивания, в то время как законы Кеплера дают эллиптическую форму траекторий при действии притяжения).

2. Распределение рассеянных альфа-частиц должно следовать определенному соотношению между их скоростями и направлениями; справедливость этого соотношения может быть экспериментально проверена.

К 1910 г. еще не была развита методика счета альфа-частиц с помощью счетчика Гейгера и не было достаточного для статистической обработки количества фотографий столкновений альфа-частиц в камере Вильсона. Резерфорд использовал для наблюдений крошечные вспышки света («сцинтилляции»), возникающие при ударах альфа-частиц об экран, покрытый минералом. Наблюдатель должен был находиться около 20 мин в темноте, пока его глаза адаптируются. После этого, прослеживая экран в микроскоп, он видел слабые вспышки от каждой альфа-частицы, ударившейся в экран[136].

Фиг. 66. Рассеяние альфа-частиц.

Итак, математический аппарат предсказывал число сцинтилляций, ожидаемых на маленьком подвижном экране, располагаемом в различных положениях для подсчета альфа-частиц, отклоненных от своей траектории на определенные углы. Эти предсказания были тщательно проверены. Предсказанное число частиц составляло следующую часть полного числа частиц, выстреливаемых в золотую фольгу (большинство частиц проходит через фольгу без отклонений):

где К — константа, которую можно рассчитать из геометрии опыта (расстояния от точки пересечения α-лучей с экраном до фольги и толщины фольги); +Ze — заряд ядер золота, заряд, который имели бы Z положительно заряженных электронов; А — угол отклонения. Это предсказание было основано на законе обратных квадратов, без которого ни сомножитель 1/v4, ни 1/(sin4 A/2) не могли появиться. Резерфорд и его сотрудники исследовали оба эти предсказанных множителя.

Используя а-частицы с известными большими, средними и малыми скоростями, они проверили предсказание

ЧИСЛО УДАРОВ ОБ ЭКРАН ~ 1/v4

умножая найденные числа ударов об экран на v4. Вы уже встречались с результатами этих измерений в задаче 3 гл. 18. Результаты измерений очень хорошо совпадали с предсказанными. Это само по себе давало ясное указание на законность применения закона обратных квадратов. Для рассеяния на один и тот же угол более быстрые частицы должны были пройти ближе к ядру — при этом возникают большие силы в их более короткой встрече, — и мы должны ожидать тем меньшее число попаданий (в среднем) таких частиц, чем меньше диаметр мишени.

Более общее рассмотрение взаимодействий в глубине атома золота позволяет видеть, что число ударов об экран изменяется как 1/(sin4 A/2) в соответствии с предсказанием.

Альфа-частицы, простреливающие лист золота, действуют как исследователи поля, показывая своими отклонениями, действие каких сил они испытали. В тонком листе большинство из них не может проходить очень близко от ядер, поэтому они отклоняются только на малые углы; некоторые проходят довольно близко и отклоняются заметно, а редкие α-частицы отклоняются на большие углы, так как они оказались случайно нацеленными на область, очень близкую к ядрам золота. Таблица показывает результаты опыта. Такие результаты восхитили бы Кеплера. Совпадение отношений в последней колонке дает ясное свидетельство в пользу закона обратных квадратов, действующего в огромной области внутри атома золота.

* От первоначального направления движения альфа-частиц.

** Число сцинтилляций, наблюдавшихся за определенное, постоянное для всех опытов время, для заданного угла А°.

Примечание. В подлинных экспериментах Гейгер и Марсден проводили один ряд измерений для больших углов отклонения и другой ряд для малых углов отклонения с намного более слабым радиоактивным источником. Для получения единого ряда данных в приведенной выше таблице числа сцинтилляций для малых углов были умножены на соответствующий коэффициент.

Оригинальные данные можно найти в журнале Philosophical Magazine, 25, 610 (1913), табл. II.

Резерфорд мог даже оценить заряд ядер. Первые его расчеты указывали на атомный номер — порядковый номер элемента-рассеивателя в периодической системе. Уже «носилась в воздухе» идея, что этот порядковый номер, который численно составляет около половины атомного веса для легких элементов, должен играть большую роль в объяснении структуры атома. Казалось возможным полагать, что число электронов в атоме составляет около половины числа, определяющего атомный вес. Исключение составлял водород, терявший только один электрон. Но уже гелий (масса гелия больше массы водорода в 4 раза) может легко терять два электрона; он не показывает никаких признаков возможности потерять большее их число. Была сделана попытка рассчитать число электронов в атоме углерода, заставляя его рассеивать рентгеновские лучи, вероятно, излучаемые при «вибрациях» атомных электронов. Рентгеновские лучи могли рассеиваться твердыми телами, и казалось вероятным, что «вибраторами», взаимодействующими с рентгеновскими лучами, были электроны. С трудом полученная округленная оценка числа электронов в атоме углерода дала значение около 6. Но количество электронов, вращающихся вокруг ядер в атомной модели Резерфорда, должно быть численно равно положительному заряду ядра Z.

Резерфорд, таким образом, сделал предположение, что заряд ядра равен порядковому номеру элемента в периодической системе, его атомному номеру[137]. Это положение можно проверить, исследуя рассеяние альфа-частиц, так как константа К, входящая в предсказание, может быть рассчитана — все члены формулы, кроме Z, известны. Таким образом, наблюдение рассеяния альфа-частиц позволяет рассчитать значение Z. Было изучено рассеяние альфа-частиц тонкими листами меди, серебра, платины. Порядковые номера этих элементов в периодической системе или «атомные номера», равны 29, 47, 78. Изучение рассеяния α-лучей этими металлами дало значения Z, равные 29,3, 46,3, 77,4, с точностью в 1 %.

Далее, мы можем рассчитать, насколько близко от ядра прошла альфа-частица, если мы уверены в приложимости закона обратных квадратов и знаем величину заряда ядра. Мы найдем, что хорошим приближением является 10-14 м, или 0,0001 А°. Это в 10 000 раз меньше оценки для размера атома (1 или 2 А°). Таким образом, представляется, что 9999/10 000 объема атома является пустым. (См. задачу 17 в гл. 33).

Итак, мы имеем ясную картину атома с крошечным массивным ядром, несущим положительный заряд, в Z раз больший, чем заряд электрона, и Z электронами, вращающимися вокруг ядра на большом расстоянии от него. Атом водорода имеет Z = 1, ядро с единичным положительным зарядом и один электрон; атом гелия с Z = 2 имеет ядро с зарядом «++»и два электрона и т. д. Отдавая свой электрон, атом водорода превращается в ион водорода Н+, который мы сейчас называем протоном. Отдавая два свои электрона, атом гелия превращается в альфа-частицу, Не++. (Не удивительно, что испускаемая альфа-частица — гелий без электронов — имеет ровно два «+» заряда.) Другие атомы при образовании ионов обычно теряют только один или два электрона из многих.

Картина, представляющая атом в виде миниатюрной солнечной системы, оказалась слишком упрощенной. Последующие исследования показали, что электроны не вращаются по планетарным эллиптическим орбитам и не разложены по орбитам с такой точностью, как предметы по полочкам у хорошей домохозяйки. Ранняя модель атома содержала слишком много ненаблюдаемых деталей, хотя рассеяние альфа-частиц и дало ясную информацию о том, что атом является почти пустым образованием с маленьким, массивным, положительно заряженным ядром, создающим вокруг себя электрическое поле, убывающее обратно пропорционально квадрату расстояния и действующее на больших расстояниях в пределах области, определяемой размерами атома, найденными ранее. Картина атома, данная Резерфордом, была явно незаконченной, требовались дальнейшие теоретические рассмотрения и дальнейшие исследования. Теоретические рассмотрения, начатые Бором, привели к новой теории, к которой мы и обратимся.

Задачи к главе 40

Задача 1

а) Какие очевидные экспериментальные факты убеждают нас, что гравитационное поле Солнца подчиняется закону обратных квадратов в большой области, простирающейся от 57 600 000 до 44 800 000 000 км?

б) Какие наблюдения можно сделать (случайно) для расширения области исследования гравитационного поля Солнца в сторону уменьшения и увеличения границ, указанных в а)?

в) Какие эксперименты показывают, что взаимодействие атомного ядра (например, ядра атома золота) с внешними электрическими зарядами подчиняется закону обратных квадратов?

г) Какие другие сведения об атомном ядре дают эксперименты, о которых говорится в в)?

Задача 2. Связь рассеяния альфа-частиц с их скоростью

Если вы не решили задачу 3 в гл. 18, вы можете проанализировать условия этой задачи снова, используя более новые знания, полученные при изучении этой главы.

Когда две нейтральные молекулы (или два атома) налетают друг на друга, то при сближении происходит их поляризация (небольшое смещение разноименных зарядов в противоположные стороны). Благодаря этому между молекулами возникает слабое притяжение (притяжение разноименных зарядов эффективнее отталкивания одноименных).

При более тесном сближении системы электронов в атомах начинают сплющиваться, оказывая сопротивление сближению (принцип Паули, глава 44). Электроны могут перейти на орбиты, охватывающие оба атома. При этом возникает сильное отталкивание между атомами за счет кулоновского взаимодействия ядер. Тогда атомы разлетаются со своими первоначальными кинетическими энергиями.

Медленный электрон (например, с энергией 1/2 эв) не может вызвать каких-либо изменений в атоме. Он упруго отскакивает от массивного атома.

 Однако более быстрый электрон (например, с энергией 100 эв) может выбить у атома электрон (за счет своей кинетической энергии). Выбитый электрон блуждает до тех пор, пока не захватывается другим атомом, образуя из него отрицательный ион.

Электроны, проходя близко от атомов, выбивают из них электроны, превращая их в положительные ионы. Выбитые электроны могут присоединяться к другим атомам, превращая их в отрицательные ионы. Если положительные и отрицательные ионы не развести в разные стороны электрическим полем, то они вскоре могут встретиться и нейтрализовать друг друга.

Проходя близко от атома или через его внешние области, α-частица легко вытягивает из него электрон своим электрическим полем. Электрон, блуждая, может быть захвачен атомом, и образуется отрицательный ион, α-частица проскакивает мимо, практически не отклоняясь.

Одна из α-частиц, подойдя близко к ядру, отклоняется им на большой угол. Большинство же проходит прямо, не отклоняясь.

Фиг. 67. Картина атомных и ядерных столкновений.

Эти рисунки, условно отражающие некоторые детали атомной структуры, иллюстрируют подлинные атомные события.