Глава 29. Экспериментальные основания закона сохранения энергии

We use cookies. Read the Privacy and Cookie Policy

«В соответствии с общепринятыми правилами ревизии нами проверен балансовый отчет…, включая как проверку бухгалтерских записей, так и другие документы, о которых упоминалось выше… По нашему мнению…»

Из акта ревизии

Рассмотрение расхода топлива и механическое правило

РАБОТА = СИЛА ∙ РАССТОЯНИЕ

привели нас к определенному понятию — энергии, изменение которой измеряется работой. Было установлено также, что энергия всегда сохраняется. Мы констатировали этот принцип или, скорее, просто приняли его, приведя ряд простых примеров. Все это было сделано для того, чтобы вы поняли, что такое энергия, прежде чем мы начнем говорить об ее удивительной истории.

Экспериментаторам прошлого нелегко было выпутаться из множества форм энергии и составить этакий «балансовый отчет». Вскоре после того, как Ньютон показал важность величины mv для механики, были высказаны предложения, что измерять эффект силы лучше величиной mv2. Ей было дано энергичное имя vis viva — «живая сила», тогда как mv было названо просто импульсом. Тогда, в XVII веке, были даже две соперничающие школы: одни яростно защищали mv, а другие — mv2. Однако позднее стало всем ясно, что полезны обе величины: прирост mv — это (сила)∙(ВРЕМЯ), а прирост mv2 — удвоенная (сила)∙(РАССТОЯНИЕ).

Машины

Произведение сила на расстояние уже давно играло важную роль в примитивных механизмах прошлого. Бессознательно им пользовались еще создатели первых машин, а Леонардо да Винчи (~1500 г.) уже ясно писал о нем. При расчетах колес, блоков, прессов и т. д. эти произведения «по обе стороны» устройства принимались равными, за вычетом некоторых затрат на трение. Если мы разность затраченной и полученной работы назовем изменением энергии, то идеальные механизмы (без трения) сохраняют ее. Гарантией служит эксперимент — либо непосредственное измерение на механизмах (с учетом потерь из-за трения), либо косвенное заключение из опытных правил для рычагов, гидравлических прессов и т. д.

Экспериментальное основание обязательно должно существовать. Кабинетный ученый не может гарантировать, что для равновесия детских качелей-весов F1∙(плечо1) будет равно F2∙(плечо2) (откуда можно заключить, что работы по обе стороны равны). Даже если он объявит, что его рассуждения делают это заключение весьма правдоподобным, в этом обязательно будет отголосок «лабораторных работ», выполненных им когда-то в юности[201].

Вечные двигатели

Комбинирование простых механизмов в сложную схему не дает надежды получить энергии больше, чем затрачено. Неудачи с вечными двигателями привели к убеждению о сохранении энергии в ограниченном механическом смысле. В своем труде «Маятниковые часы» (1673 г.) Гюйгенс, современник Ньютона, предупреждал:

«Когда любое количество грузов силой их притяжения в движение приведено, то общий центр тяжести, по-видимому, не может подняться выше того места, кое он занимал до начала движения… Когда бы строители новых машин, пустые попытки построить вечный двигатель предпринимающие, с этим принципом познакомились, они бы лучше свои ошибки видели и совершенную невозможность сделать оный механическим способом поняли бы».

Потенциальная энергия + кинетическая энергия

Закон рычага применим к уравновешенным качелям-весам как в покое, так и в движении. Когда на одном конце мальчик-толстяк с постоянной скоростью опускается вниз, на другом худенький мальчик взлетает вверх; действует закон рычага и, следовательно,

РАБОТА НА ВХОДЕ = РАБОТА НА ВЫХОДЕ.

Нетрудно нарушить этот закон. Подвиньте толстяка поближе к краю, тогда качели будут ускоряться и худенький мальчик взлетит вверх, а толстяк стукнется о землю. Если рассматривать вес мальчиков как силу на входе и на выходе, равенство (работа на входе) = (работа на выходе) уже не будет соблюдено — толстяк вносит больше, чем забирает худенький мальчик. Но нам нет нужды отказываться от закона сохранения энергии. Можно придумать другую форму, кинетическую энергию, Eкин, и вычислять ее по правилу Eкин = 1/2 mv2, полученному из комбинирования F = ma и определения (paбота) = Fs. В начале XIX века сохранение энергии означало, что сумма

ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ изменение которой равно (сила)∙(расстояние) + КИНЕТИЧЕСКАЯ ЭНЕРГИЯ величина которой равна 1/2 mv2

постоянна (для идеальных механических систем). Этот закон полезен для решения задач физики и техники. На деле он состоит из II и III законов Ньютона и предположения, что силы складываются как векторы. Поэтому он основан на эксперименте в той же степени, что и II закон: F = ma. Это выявляет важную характеристику таких механических систем, о которой было известно уже в давние времена: изменение энергии при любых движениях не зависит от выбранного пути. Пусть, например, груз от двери сарая А переносится в дальний угол его чердака В. Как бы мы ни перемещали его:

— сначала подняли вверх, а потом переместили по горизонтали,

— сначала по горизонтали, а потом вверх,

— или вверх по наклонной плоскости,

— или по какой-то причудливой кривой (с помощью блоков),

— или даже сначала подняли над крышей, а затем опустили на чердак,

прирост потенциальной энергии (Eпот) будет тем же самым.

Чтобы показать, как это следует из закона сохранения энергии, рассмотрим перемещение из А в В по двум путям, причем будем начинать и кончать состоянием покоя, трением пренебрежем.

Перенесем груз из А в В по пути I, а затем назад по пути II. Возвратившись в начальную точку А, мы пришли к той же потенциальной энергии. Следовательно, затраты на путях I и II одинаковы. В противном случае мы могли бы создать вечный двигатель, перемещая груз вверх по одному пути, а вниз — по другому и получая при каждом цикле прирост энергии.

Поверив в сохранение энергии, мы видим, что правило Галилея о наклонной плоскости очевидно; каков бы ни был наклон, масса М, сталкиваемая с высоты h, теряет потенциальную энергию, равную Mgh, и приобретает кинетическую энергию, равную 1/2 mv2. Если нет потерь на трение, то эти два изменения должны быть сбалансированы, Mgh = 1/2 mv2. Тогда скорость v = √(2gh) — одна и та же при любом наклоне высотой h, как отвесном, так и отлогом, как прямом, так и искривленном. Так что опыт Галилея был фундаментальной проверкой закона сохранения энергии.

Если математикам «дать» Солнце и планету при некотором начальном условии, то они смогут предсказать орбиту планеты. Один из наиболее простых способов — это написать уравнение, исходя из того, что сумма (кинетическая энергия) + (потенциальная энергия) (в изменяющемся гравитационном поле Солнца) вдоль орбиты остается постоянной. В комбинации с уравнением для другой сохраняющейся величины (например, момента количества движения) это приведет к уравнению для орбиты, т. е. к эллипсу[202].

Хотя закон сохранения энергии полезен, до сих пор он вряд ли был всеобщим. Включение же теплоты, химической энергии и др. в одну грандиозную схему привело к перерастанию его в важнейший закон.

Теплота как форма энергии

Лукреций (~ 80 г. до н. э.) так описывал взгляды греческих философов, живших за несколько веков до него[203]:

«… телам изначальным, конечно,

Вовсе покоя нигде не дано в пустоте необъятной.

Наоборот: непрерывно гонимые разным движеньем,

Частью далеко они отлетают, столкнувшись друг с другом,

Частью ж расходятся врозь на короткие лишь расстоянья.

Тех, у которых тесней их взаимная сплоченность, мало,

И на ничтожные лишь расстоянья прядая порознь,

Сложностью самых фигур своих спутанны будучи цепко,

Мощные корни камней и тела образуют железа

Стойкого, так же, как все остальное подобного рода.

Прочие в малом числе, в пустоте необъятной витая,

Прядают прочь далеко и далеко назад отбегают

На промежуток большой. Из них составляется редкий

Воздух…»

Воззрения греческих атомистов в течение многих веков либо предавались забвению, либо преследовались. Их идеи были возрождены только во времена Галилея. Причудливую теорию атомов строил Декарт, а Ньютон размышлял над теплотой как движением атомов. Философы последующего века создали грандиозные схемы применения могучей механики Ньютона к декартовым атомам. Они считали, что, задав положение и движение всех атомов, можно предсказать все, что произойдет в будущем. Но атомная картина все еще оставалась в рамках заумных рассуждений, а связь между теплотой и «атомным» движением была лишь внешней.

«Теплород»

В течение долгого времени после Ньютона представление о теплоте продолжало оставаться не слишком ясным. Примерно в 1750 г. Джозеф Блейк провел четкую грань между количеством тепла и температурой. Он измерял количество тепла, нагревая воду или растапливая лед. В последнем случае не требуется даже термометра — теплота измеряется по массе растаявшего льда. Он определил величину, которую мы теперь называем «удельной теплоемкостью», и построил теорию теплоты как некой жидкости, которая без потерь может перетекать из горячих тел в холодные. Даже когда кажется, что теплота исчезает при плавлении или испарении, она прячется в виде «скрытой теплоты», которая может быть выделена при обратном переходе.

Эта «жидкость» вскоре была названа флогистоном, или «теплородом». Нагревание тел означало наполнение пространства между атомами теплородом и увеличение его давления. Считалось, что между «атомами» воды, обладающей большой теплоемкостью, имеется много-свободного места. А в свинце с его малой теплоемкостью места для теплорода должно быть мало, небольшого количества его хватает, чтобы наполнить промежутки до высокой температуры. Было много споров о весе теплорода. Некоторые считали, что он обладает весом, другие же, убедившись в том, что нагретые тела легче, приписывали ему отрицательный вес. Наконец, Румфорд взвесил некое количество льда, нагрел его, пока не превратил в теплую воду, вновь взвесил и перемен не обнаружил. Однако это не опровергало существования теплорода, а лишь указывало на интересное его свойство — невесомость. К 1800 г. теория теплорода казалась хорошо экспериментально обоснованной. Она позволяла легко разбираться в нагревании, охлаждении, плавлении, испарении. Она объясняла даже расширение при нагревании: теплород раздвигал атомы, действуя на них силовыми полями, подобными тем, которые сейчас так популярны в атомной физике. Она с легкостью объясняла также нагревание вещества при трении. Соскальзывая вниз по канату, матрос выжимает из него теплород — говорили приверженцы теплорода? Они могли почти нарисовать картину, как руки человека выжимают теплоту из промежутков между атомами каната, подобно воде из мокрой губки. Но почему же теплород не возвращался обратно, когда матрос отпускал канат? «Да, не возвращается» — таков, по-видимому, был первый ответ. Разумеется, он не возвращается, ибо натертые предметы остаются горячими довольно долго и медленно передают тепло своему окружению. Суть дела в том, — следовали подробные объяснения, — что трение сдавливает канат, уменьшая в нем пространство для теплорода. Таким образом, теплород выжимается и обжигает человеку руки. Это изменение необратимо — в канате остается меньше места для теплорода.

Меньше места для теплорода? Но при атом сдавленный канат должен иметь и меньшую удельную теплоемкость. Это могло бы послужить решающей проверкой теплородной точки зрения. Эксперименты не обнаружили каких-либо изменений, хотя многие приверженцы теплорода цеплялись за свою точку зрения. Они, по-видимому, оправдывались тем, что выжимается лишь малая доля всего теплорода, поэтому изменения удельной теплоемкости должны быть очень малыми. В то время как Блейк и другие уточняли и улучшали измерения, все с большей настойчивостью выдвигалось другое объяснение теплоты — как энергии молекулярного движения.

«Теплота — это очень быстрое колебание неощутимых частичек предмета… то, что мы ощущаем как теплоту, для предмета не более как движение»,

Джон Лот (1796 г.)

«… теплота — это vis viva, происходящая из-за неощутимого движения молекул тела».

Лавуазье и Лаплас (1780 г.)[204]

Все более широкое применение паровых машин и новое понимание химии горения в XIX веке вызвали всеобщий интерес инженеров и натурфилософов (химиков и физиков) к природе тепла.

Лавуазье и Лаплас полагали, что животное и человек также «сжигают» свою пищу в кислороде с образованием воды и углекислого газа, получая столько же тепла, как если бы ту же пищу сжигали в маленькой печи и нагревали воду. Они утверждали, что измерение вдыхаемого кислорода или выдыхаемого углекислого газа могло бы показать, сколько мы «сжигаем» пищи. Она предложили идею химической энергии, которая высвобождается при горении. В 1779 г. Кроуфорд для определения потребления кислорода сажал в изолированный ящик морскую свинку и измерял ее теплоотдачу. Затем он заменил свинку небольшой печкой с горящим углем. При том же потреблении кислорода печка давала почти то же количество тепла. Аналогичный результат дал и горящий воск. Полученные результаты были обнадеживающими. Такие эксперименты поистине весьма трудны, но с той поры они систематически проводились на животных и человеке, и точность их все возрастала. Результаты показали, что выделяемая животными теплота согласуется с теплотой, полученной при сжигании, с точностью до 1 %.

Доказательство Румфорда

В конце XVIII века граф Румфорд впервые экспериментально доказал, что теплота — вовсе не неуничтожимая жидкость, а нечто, получаемое при желании в неограниченном количестве за счет механической энергии. Сам Румфорд (его настоящее имя Бенджамен Томсон) был замечательным человеком. Уроженец Новой Англии, Румфорд легкомысленно стал противником, тех, кто победил в борьбе за независимость, и поэтому вынужден был эмигрировать в Англию. Он был известен не только как блестящий организатор и ученый-экспериментатор, обладающий способностями и огромной любознательностью, но и как политик, покрывший себя славой. Получив за выдающиеся заслуги рыцарское звание, Румфорд отправился в путешествие по Европе. В период своего пребывания в Баварии он так блестяще проявил свои организаторские способности, что был назначен на пост военного министра и ему поручено было реорганизовать армию. Успешна выполнив это, он, опираясь на армию, сумел организовать огромную массу безработных, наводнявших в ту пору Мюнхен, построил для них удобные бараки и обеспечил работой. Благодарное баварское правительство пожаловало ему графский титул; он выбрал себе имя Румфорд в честь небольшого местечка вблизи Конкорда в Нью-Хэмпшире. Дальнейшую славу ему принес разработанныи им дешевый, но здоровый пищевой рацион и специальное кухонное оборудование; Румфорд провел столько исследований по экономичным печам и очагам, что после своего возвращения в Англию давал консультации по этим вопросам в разных уголках страны. Еще будучи в Баварии, Румфорд исследовал теплоту, выделяемую при сверлении стволов бронзовых пушек. Он заметил, что тупое сверло очень плохо режет металл, но дает огромное количество тепла. Пока лошади приводили в движение очень тупое сверло, Румфорд успевал вскипятить поставленные на пушках котлы с водой. Он пришел к выводу, что выделение тепла безгранично и зависит лишь от продолжительности работы лошадей. Так Румфорд пришел к идее тепла как формы энергии[205]. Он нанес жестокое поражение сторонникам теплорода своими измерениями теплоемкости стружек. Он установил, что стружки имели ту же удельную теплоемкость, что и остальная часть пушки, т. е. в них было столько же свободного места для «теплорода».

1840–1860 годы. Доказательство

В 1840 г. теория теплорода подверглась ожесточенным нападкам, хотя ее еще придерживались ученые[206].

Наступило время, когда появилось новое убеждение, что теплоту можно создать за счет механической энергии. Однако идея эта формулировалась пока неясно, слово «энергия» было непривычным, бытовало еще запутывающее все слово «сила». Чтобы теплота утвердилась как форма энергии, нужны были точные и разнообразные эксперименты. И с начала 1840 г. они появились во множестве.

Чтобы поверить в сохранение энергии, выполните эти эксперименты. Для победы в науке нужны сильные доказательства. Если теплота — действительно форма энергии, эквивалентная потенциальной и кинетической энергиям, то в каждом эксперименте, в котором происходит превращение одной формы энергии в другую, т. е. обмен «теплота —> механическая энергия», должен действовать один и тот же «обменный курс». Эксперименты, в которых за счет механической энергии создавалась теплота, следовали один за другим. Убыль механической энергии измерялась по формуле (сила)∙(расстояние), а увеличение количества тепла — произведением (масса нагреваемой воды), (повышение температуры). Каждый раз природе задавался вопрос: «Дает ли каждая единица потенциальной энергии одно и то же количество тепла?» или «Зависит ли от материала и метода эксперимента величина (ньютон)∙(метр) = (потенциальная энергия), которая должна исчезать для появления Кал? Если при любых переходах в теплоту — будь то химическая энергия или электрическая — «обменный курс» один и тот же, то мы можем говорить о всеобщем законе сохранения.

Многие из таких экспериментов были поставлены Дж. П. Джоулем — манчестерским пивоваром, ученым-любителем, который целью своей жизни поставил доказать, что теплота — это форма энергии. С огромным энтузиазмом и неподражаемым искусством Джоуль давал одно экспериментальное доказательство за другим. Его аргументы убеждали как разнообразием, так и точностью измерений.

Точное измерение количества тепла весьма затруднительно. Тепло утекает из любого прибора, температура которого отличается от комнатной. Эту утечку можно уменьшить, если использовать невысокие температуры, ибо скорость утечки приблизительно пропорциональна разности между комнатной температурой и температурой прибора. Утечку можно сделать менее существенной, применяя прибор больших размеров, так как утечка тепла — это поверхностный эффект, а полный запас тепла при данном повышении температуры пропорционален объему. Поэтому в большом приборе утечка будет составлять меньшую долю измеряемого количества тепла. Джоуль брал много килограммов воды и специальный термометр, градуированный с точностью до 1/20 градуса, так что он мог установить температуру с точностью до 1/200  градуса. Он прилагал большие усилия, чтобы уменьшить потери тепла и контролировать их. В некоторых случаях он пытался исключить утечку тепла, вычитая результаты двух экспериментов при «рабочем» и «холостом» ходе, в которых переход энергии был разным, а потери одни и те же.

В одном из своих ранних экспериментов Джоуль нагревал воду, заставляя ее протекать по очень тонким трубкам. Перфорированный поршень в цилиндре с водой приводился в движение весом падающих грузов. При этом (вес)∙(Δ высоты) давали ему убыль потенциальной энергии (скажем, в кГм), а (масса воды)∙(возрастание температуры) измеряли создаваемое количество тепла.

Джоуль нашел, что на каждую единицу теплоты (1 фунт воды на 1 градус Фаренгейта) затрачивается потенциальной энергии 770 фут∙фунт веса[207]).

Джоуль усовершенствовал метод. Для этого вода размешивалась. Делалось это с помощью специального колеса с лопатками, помещенного в изолированный контейнер с водой и приводимого в движение падающими грузами. Благодаря специальному устройству контейнера и лопаток трение сильно возрастало и для приведения лопаток в движение требовался значительный вес. Когда грузы падали до конца, Джоуль отцеплял их и поднимал вновь. Для нагревания воды потребовалось 20 таких циклов (см. задачу 2 в конце этой главы). Медленно снижаясь, при каждом падении грузы теряли потенциальную энергию, но заканчивали падение с небольшой кинетической энергией, которая передавалась при ударе полу. Джоуль тщательно учитывал эту кинетическую энергию, которая возникала за счет потери потенциальной энергии, но не давала вклада в измеряемое количество тепла.

Он тщательно измерял охлаждение сосуда, так что мог учесть утечку тепла и во время перемешивания воды. Затем брал полную потерю потенциальной энергии и полное тепловыделение и получал коэффициент перехода 780:1 в своих единицах. Такое отношение характерно не только для воды. Чтобы доказать это, Джоуль помещал в сосуд и ртуть, и китовый жир и даже определял выделение тепла при трении железных плиток[208].

Фиг. 84. Опыты Румфорда, Дэви и Джоуля с превращением энергии.

Позднее Джоуль вернулся к еще более точному измерению перемешивания воды. Его последний опыт с перемешиванием, сделанный через 40 лет после первого, был повторен Роуландом в университете Джона Гопкинса, однако крыльчатое колесо приводилось в движение паровой машиной.

В первых экспериментах Джоуль сделал очень смелый шаг — он пользовался только что открытым электрическим током. Джоуль, а также Генри в Принстоне и другие построили большие электромагниты.

Джоуль создал одну из первых электромагнитных машин, которую можно было использовать и как электромотор, и как генератор. Он брал катушку из медного провода, которая вращалась в поле между полюсами «электромагнита». Генератор приводился в движение падающими грузами. В отсутствие тока катушка вращалась легко, и для преодоления трения нужны были лишь небольшие грузики. Когда же катушка вырабатывала ток, приводить ее в движение становилось гораздо труднее — требовались значительно большие грузы.

Джоуль догадался, что дополнительная потенциальная энергия выделялась током в виде теплоты. Чтобы получить максимальный ток, он соединил концы катушки в короткозамкнутую цепь и, окружив катушку водой, собрал выделяемое тепло.

Вычитая результаты измерений при холостом ходе из результатов рабочих измерений, Джоуль исключал трение, учесть которое по-другому было бы невозможно. Итак, электрическая энергия в качестве промежуточного звена дала практически то же самое отношение, т. е. 780:1.

Затем Джоуль использовал свою машину как электромотор, работающий от батареи. Когда катушка была зажата (в покое), текущий через нее ток нагревал окружающую воду. Когда же катушка освобождалась и, вращаясь, поднимала груз, теплоты выделялось меньше, но груз приобретал потенциальную энергию.

Вычитание двух результатов для одинаковых химических изменений в батарее при переходе потенциальной энергии в теплоту снова дало отношение примерно 800:1. На этот раз общим источником была химическая энергия и Джоуль предположил, что при одном и том же расходе химикалий выделяется одна и та же энергия. (Из других химических опытов он убедился, что химическая, электрическая и тепловая энергии при взаимных переходах правильно «балансируют его счета».)

Фиг. 85. Опыты Джоуля, Роуланда и Хирна с превращением энергии.

Фиг. 86. Опыты Каллендера и Барнеса.

Косвенные методы используют электрические измерения. Амперметр градуируется по силе взаимодействия катушек с током, вольтметр градуируется на примитивном генераторе, дающем э. д с, которую можно вычислить из простой геометрии, измеренного тока и скорости вращения.

* * *

Эксперименты по изучению взаимного превращения механической энергии и теплоты

Краткое описание и результаты некоторых из наиболее известных экспериментов

Год ∙ Экспериментатор ∙ Метод ∙ Результат в единицах Кал на тыс. дж

1708 ∙ Румфорд

Сверление пушки тупым сверлом. Лошади, приводившие в движение сверлильный станок, создавали «неограниченное количество» тепла. Сам Румфорд не вычислял механического эквивалента, но вычисления, основанные на его записях работы лошадей и нагревания воды, согласно Джоулю, позднее привели к указанной оценке ∙ 5 или 6

1799 ∙ Дэви

Трение двух кусочков льда один о другой, по его мнению, вызывает их таяние. Пользуясь часовой пружиной, он с помощью трения расплавлял в вакууме воск. (Эксперименты слишком грубы, чтобы служить истинной проверкой, но опыты Дэви сильно повлияли на взгляды других ученых.) ∙ 3,5

1842 ∙ Майер

Предложил термин «механический эквивалент тепла» и оценил его, исходя из удельной теплоемкости газов, но использовал неточные данные и делал произвольные допущения ∙ 3,5

1839–1843 ∙ Джоуль

Экспериментировал с электрическим током; он интерпретировал эффект нагревания и химический эффект на основе растущей веры в нечто, похожее на сохранение энергии, рассматривая теплоту как форму движения ∙ 3,5

1843 ∙ Джоуль

Построил простую электрическую машину, которая могла использоваться либо как генератор, либо как мотор. Приводя ее как генератор в движение падающими грузами, он измерял теплоту, созданную движением тока по катушке, погруженной в воду. (Роль катушки на деле выполнял статор машины.) Вычитание результатов эксперимента с выключенным магнитом («холостой ход») из результатов с включенным магнитом («рабочий ход») позволило ему учесть трение в подшипниках и т. д. ∙ (4,76; 5,38; 5,60; 4,90)

1843 ∙ Джоуль

- Та же машина использовалась как мотор. (А) Мотор, приводимый в движение батареей, поднимал груз. (Б) Батарея создавала тот же ток и нагревала провода (на самом деле устройство было сложнее, но идея та же самая) ∙ (5,51; 3,15)

- Улучшенная установка, описанная выше ∙ (4,62; 4,62; 3,95)

1843 ∙ Джоуль

Вода пропускалась по тонким трубкам и нагревалась за счет внутреннего трения в жидкости. Измерялась сила, с которой поршень с очень маленькими отверстиями «продавливался» через воду в цилиндре ∙ 4,42

1844 ∙ Джоуль

Воздух, сжимаемый последовательными движениями компрессора, нагревался. Сосуд со сжатым воздухом помещался в большую массу воды для отвода и измерения количества тепла. При вычислении потребленной механической энергии Джоуль учитывал изменение сжимающей силы вследствие изменения давления по «закону Бойля» ∙ 4,22

1845 ∙ Джоуль

То же устройство, но с большим сжатием ∙ 4,27

1845 ∙ Джоуль

Сжатый воздух в сосуде, помещенном в водяную ванну, расширялся до атмосферного давления, охлаждаясь за счет этого ∙ (4,08; 4,37; 4,91)

1845 ∙ Джоуль

Приводимая в движение падающими грузами крыльчатка перемешивала воду и за счет трения в жидкости, нагревала ее. (Первая форма эксперимента Джоуля.) ∙ 4,80

1847 ∙ Джоуль

- Усовершенствованная крыльчатка, перемешивающая воду. (Джоуль накручивал на барабан веревку с грузами и, чтобы получить достаточное повышение температуры, заставлял их падать по 20 раз. Он учитывал потерю тепла на нагревание воздуха и потерю кинетической энергии при ударе грузов о пол.) ∙ 4,21

- В том же устройстве вместо воды использовался китовый жир (о учетом измеренной удельной теплоемкости жира) ∙ 4,22

- В том же устройстве использовалась ртуть ∙ 4,24

1848 ∙ Джоуль

В том же устройстве перемешивалась вода. Было сделано 40 опытов с еще большей точностью. Джоуль полагал, что погрешность этих результатов составляет 0,5 % ∙ 4,15

1850 ∙ Джоуль

В том же устройстве перемешивалась ртуть ∙ 4,16

1850 ∙ Джоуль

Нагревание железных плиток трением ∙ 4,21

1857 ∙ Фавр

При одном и том же токе и продолжительности работы батарея создавала механическую энергию или теплоту ∙ (4,17-4,54)

1857 ∙ Хирн

Сверление металла тупым сверлом ∙ 4,16

1861 ∙ Хирн

- Охлаждение водой металлического тормоза ∙ 4,23

- Нагревание воды при прохождении ее через узкую трубку под высоким давлением ∙ 4,16

- Расплющивание свинца. (Маятник-молот 300 кГ со скоростью 4,5 м/сек ударял по куску свинца 2,5 кГ на каменной наковальне массой 1 т. Свинец нагревался примерно на 5 °C.) ∙ 4,17

- Охлаждение сжатого воздуха при расширении в атмосферу ∙ 4,31

- Паровая машина (переход теплоты в механическую энергию). Арендовалась заводская паровая машина, для которой определялось полное количество тепла, переданное топкой пару; далее вычислялись затраты тепла на излучение, в конденсаторе и т д. и определялась полученная механическая энергия ∙ (4,12-4,23)

1858 ∙ Фавр

Трение металлов в ртути ∙ 4,05 

1857–1859 ∙ Вебер, Фавр, Зильберман, Джоуль, Боша, Ленц и Вебер 

Косвенные электрические методы. Измерялась теплота, выделяемая током в проводах или в химических батареях. Оценка механической энергии производилась косвенно по электрическим приборам (амперметру, вольтметру и/или омметру). Электрические единицы еще не были твердо установлены, так что результат ненадежен ∙ (3,9; 4,2; 4,2; 4,2; 4,1; 4,1; 3,9–4,7)

1865 ∙ Эдлунд 

Расширение и сжатие металлов ∙ 4,35; 4,21; 4,30 

1867 ∙ Джоуль

Количество тепле, выделенного известным током на известном сопротивлении ∙ 4,22

1867 ∙ Вебер

То же ∙ 4,21 

1870 ∙ Виолле 

Вращающийся в магнитном поле диск нагревался вихревыми электрическими токами. Измерялся механический момент и выделение тепла ∙ 4,26; 4,26; 4,27

1875 ∙ Пулуй 

Трение металлов ∙ (4,167-4,180) 

1878 ∙ Джоуль

Перемешивание воды крыльчаткой; усовершенствованная установка (среднее из 34 опытов) ∙ 4,158 (5)

* * *

Тем временем и другие экспериментаторы представили новые доказательства. Во Франции Хирн сделал схожие с Джоулем сравнения и, кроме того, добавил еще два новых, хотя и грубых, но важных опыта, поскольку они отличались от остальных. С помощью огромного железного молота в виде маятника он расплющивал кусок свинца о каменную наковальню. При этом измерялась кинетическая энергия маятника до удара с учетом остаточной кинетической энергии и потери ее сравнивались с теплотой, выделившейся в неупругом свинце. Хирн производил также и обратные измерения, когда теплота исчезала, а механическая энергия появлялась. Он арендовал обычную фабричную машину и замерял поступавшее количество тепла и выход механической энергии. Он определял теплоту горячего пара, вычитал из нее теплоту, растраченную в воздух, и т. д., и сравнивал остаток с увеличением механической энергии.

Посмотрите же теперь на все «улики» и судите сами. Получился длинный список результатов — от первых грубых прикидок до прецизионных измерений. Коэффициент перехода выражен в современных единицах — дж/Кал. Если вы рассмотрите работы самого Джоуля, то поймете, почему единица энергии названа его именем.

* * *

Итак, все было ясно. Оставалось лишь узнать самые «пустяки». Величина механического эквивалента J измерялась теперь с такой точностью, что нужно было пользоваться более точным значением ускорения силы тяжести g, а величина 1 Кал зависела от того, взвешивалась ли вода бронзовой гирей в 1 кг в воздухе или вакууме. Кроме того, стало ясно, что при повышении температуры воды от 10 до 11 °C и от 17 до 18 °C требуется разное количество тепла. Если, по определению, в качестве 1 Кал мы возьмем удельную теплоемкость при 20 °C (удобная комнатная температура), то при более низкой температуре она будет несколько больше. Так что для измерений с точностью до 0,1 % и выше. Мы должны договориться, при какой температуре определяется Калория.

За последние восемь лет было проделано много точных измерений величины J. Ниже приведены некоторые результаты, полученные при взвешивании в вакууме и использовании «двадцатиградусной Калории» (т. е. определенной нагреванием воды от 19,5 до 20,5 °C). 

1878 ∙ Джоуль 

Перемешивание воды. Результаты предыдущего эксперимента пересчитаны на взвешивание в вакууме и измерения газовым термометром ∙ 4,172

1879 ∙ Роуланд 

Перемешивание воды крыльчаткой, приводимой в движение паровой машиной. Большое внимание было уделено конструкции прибора и точности измерения температуры ∙ 4,179

1892 ∙ Мицелеску 

Перемешивание воды ∙ 4,166 

1899 ∙ Каллендер и Барнес 

Нагревание электричеством непрерывного потока воды. Повышение температуры измерялось также электрически! и методами ∙ 4,188

1927 ∙ Леби и Геркус 

Перемешивание воды ∙ 4,1802 ± 0,0001 

1939 ∙ Осборн и др. 

Нагревание воды электричеством ∙ 4,1819

* * *

Так в конце концов было установлено, что теплота, химическая и электрическая энергии способны к взаимным превращениям с потенциальной и кинетической энергиями и представляют собой различные формы универсальной сохраняющейся энергии.

Но энергия измерялась в разных единицах: потенциальная и кинетическая энергии в единицах работы, таких, как (ньютон)∙(метр), а теплота — в кг воды на 1 °C, или Калориях. Химическая энергия измерялась косвенно в тепловых единицах. Электрическая энергия могла измеряться в любых единицах. Мы использовали отношение этих единиц (1 Кал):(1 ньютонм) как «улику» против теплорода. Если теперь мы пришли к выводу, что теплота — это форма энергии, то их отношение должно быть универсальным, и нам необходимо точное значение этой величины. Взяв среднее из наиболее точных измерений, мы можем сказать, что

Калория при 20 °C = 4180 дж,

Калория при 15 °C = 4184 дж.

Поэтому при вычислении можно пользоваться приближенным значением 4200 дж/Кал.

Термодинамика

Итак, был установлен общий закон:

Теплота и механическая энергия могут переходить друг в друга с постоянным коэффициентом перехода.

Это утверждение мы называем первым началом термодинамики. В своей наиболее общей форме оно включает и такое утверждение, как «вечный двигатель невозможен». Мы установили этот закон на основе множества экспериментов, но при этом интересовались лишь такими вещами, как количество тепла, величина потенциальной энергии. Мы не вникали в детали и. не ставили вопросов: какие химические реакции происходят в батарее? Колеблются ли атомы расплющиваемого свинца? Такой общий подход характерен для термодинамики — и он противоположен подходу атомной физики, научающей сначала детали механизма атомных процессов, а затем на их основе делающей выводы.

Общее рассмотрение тепловых машин приводит ко второму началу термодинамики:

Теплота сама по себе не может переходить от холодного тела к теплому.

Это простое, почти тривиальное утверждение вместе с первым началом превращается в мощную теорию. Термодинамика приводит к кельвиновской шкале температур, является основой всех тепловых машин от паровоза до двигателя современной ракеты, основой теории холодильников и «перекачивания» тепла, дает возможность делать разнообразные полезные предсказания, например устанавливать связь между напряжением батареи и химическими реакциями в ней, или утверждать, что

ПОТОК ИЗЛУЧЕНИЯ ~ Т4.

Общность подхода, лежащего в ее основе, придает ей еще большую силу, ибо изменения деталей внутреннего механизма процессов в системе не могут повлиять на ее заключения.

Когда к термодинамике добавляют молекулярную картину строения вещества, она превращается в «статистическую механику», которая исследует законы хаотического движения. Благодаря этому термодинамика связывается с атомной физикой. А в последнее время примененная вместо молекул к «битам информации», она перевернула теорию и практику связи.

Физика XIX века

В начале прошлого века энергия была идеей, не имевшей прочной репутации. Но благодаря Джоулю и многим другим возникло представление о сохранении энергии: механическая переходит в тепловую, тепловая в механическую — баланс всюду сходился; химическая энергия превращалась в тепловую или сначала в электрическую, а затем в тепловую, электрическая энергия в химическую, а затем в тепловую — все это было обнаружено в массе опытов, которые проверялись и перепроверялись. Баланс все равно сходился.

Это был век торжества науки. В начале века утвердилась химия, и незадолго до этого был открыт электрический ток; в середине столетия наука об электричестве и электротехника стали развиваться гигантскими шагами, а в конце зародилась атомная физика. Но величайшим достижением, по-видимому, явилось установление закона сохранения энергии, причем энергия стала фундаментальным понятием, связавшим все воедино.

«Опыты Джоуля» в лаборатории

Работы Джоуля и его установки были чудом экспериментальной точности. Обычно результаты опытов искажаются потерями тепла. Чтобы оценить работу Джоуля, вам предстоит исследовать в лаборатории сохранение энергии. Но при этом вряд ли удастся добавить что-либо к полученным Джоулем экспериментальным доказательствам. Ваша работа скорее направлена на то, чтобы вызвать чувство уважения к Джоулю в его борьбе с трудностями и восхищение его искусством.

Опыт. Измерение перехода потенциальной энергии силы тяжести в теплоту при падении свинцовой дроби (грубый эксперимент). Положите горсть свинцовой дроби в закрытую картонную трубку и быстро переверните ее так, чтобы дробь пролетела всю высоту трубки. Резко переверните трубку еще и еще раз, подряд раз 50. С помощью ртутного термометра измерьте температуру дроби, высыпав ее в бумажный стаканчик, до и после серии переворачиваний. При каждом переворачивании трубки свинец приобретает гравитационную потенциальную энергию за счет энергии переворачивания трубки. При падении дроби ее потенциальная энергия превращается в кинетическую, которая затем при неупругом ударе дроби о дно переходит в теплоту.

Вычислите полную потенциальную энергию, потерянную дробью, и приращение количества тепла. Допустив, что весь запас потенциальной энергии переходит в теплоту и что теплота не теряется, вычислите механический эквивалент J, т. е. количество потенциальной энергии в джоулях, превратившейся в 1 Кал тепла.

1) Если хотите, взвесьте дробь или объясните, почему это не обязательно.

2) Удельную теплоемкость свинца примите равной 0,035 или посмотрите ее в таблицах.

3) Нарисуйте трубку и укажите, где находится дробь: а) в верхнем положении, б) в нижнем.

С помощью этого рисунка определите, какую нужно брать высоту падения.

4) Когда дробь заканчивает свое падение, дно трубки должно находиться на твердом столе. Если вы держите трубку в руке, то удар «смягчается», так как ваша рука пружинит, и значительная часть кинетической энергии дроби отдается руке. С другой стороны, если при переворачивании вы сдвинете трубку вверх, а затем стукнете ею по столу, дробь будет падать с большей кинетической энергией, нежели дает расчет.

5) Почему мы советуем сделать 50 переворотов? После 5 переворотов температура возрастает слишком мало, а после 5000 установится постоянная температура. Почему? Что лучше: 10, 20, 50 или 100 переворотов?

После выполнения этого опыта подумайте об его усовершенствовании. Что лучше: увеличить число переворотов, добавить дроби, удлинить трубку или взять другой термометр? Некоторые из этих изменений можно исследовать с помощью рассуждений, другие же требуют опытной проверки. Однажды группа учащихся сделала целую серию опытов, которые ясно показали, как одно из этих изменений может улучшить все дело. Это очень неточный эксперимент. Не думайте, что его результат будет в согласии с Джоулем и вряд ли можно избавиться от главных ошибок путем проведения многих опытов.

Если у вас есть приборы для более серьезных измерений — воспользуйтесь ими.

Задача 1. Опыт Джоуля и водопад

Водопад дает возможность провести эксперимент по перемешиванию воды в огромном масштабе. Джоуль проводил свой медовый месяц в Швейцарии, там он измерял разность температур между верхним и нижним уровнями водопада высотой около 50 м.

а) Предположив правильность идеи Джоуля, оцените ожидаемую разность температур, для чего:

1) вычислите потерю потенциальной энергии 2 л воды;

2) вычислите повышение температуры, считая, что потенциальная энергия этих 2 л воды превращается в теплоту (допустим, вы знаете, что 1 Кал = 4200 дж).

б) Объясните, почему повышение температуры не зависит от массы воды выбранной для расчетов?

в) Почему измерения нужно проводить в безветренный день? Чем плох ветреный день?

г) Даже в тихий день предсказанную разность температур могут дать только некоторые водопады. Опишите или нарисуйте типы водопадов, которые не дадут разности температур.

Задача 2. Измерение температуры в опыте Джоуля

Крыльчатка в опыте Джоуля вращалась с помощью двух падающих грузов по 14 кг каждый. Груз опускался приблизительно на 2 м, затем Джоуль вновь накручивал веревку и отпускал грузы. В каждом опыте проводилось 12 таких падений. Эффективная масса воды в калориметре составляла около 7 кг. (Сюда включалась и поправка на калориметр, крыльчатку и т. п.)

Допустим теперь, что коэффициент перехода между механической потенциальной энергией и теплотой составляет 4200 дж на каждую Калорию. Найдите возрастание температуры воды. (Это, конечно, искажение реального опыта. Джоуль измерял повышение температуры и отсюда выводил величину J. Однако было бы неправильно идти по этому пути, не приняв во внимание многочисленных поправок Джоуля и не используя его точные измерения. Вычисления, которые здесь требуются, покажут вам масштаб повышения температуры, которую должен был измерять Джоуль.)