7. ПО «Маяк», г. Озерск, 5 декабря 1960 г

We use cookies. Read the Privacy and Cookie Policy

Раствор карбоната плутония в монжюсе; многократные вспышки мощности; незначительное облучение.

Авария произошла в здании, где перерабатывались растворы для последующего извлечения из них плутония.

В помещении размером 5 м X 6 м X 2,5 м было размещено несколько технологических камер для оксалатной очистки плутония от примесей. В соответствии с регламентом, в данном помещении на установке должны одновременно работать два оператора. Система аварийной сигнализации (САС) в момент аварии находилась в рабочем состоянии. В камеру № 9 поступал азотнокислый раствор плутония из отделения регенерации облученных блоков природного урана. Этот регенерационный раствор плутония с концентрацией плутония несколько граммов на литр подвергался оксалатному осаждению в реакторе большого объема (диаметр 0,5 м, высота 0,9 м, объем 180 л), затем после ряда операций передавался в виде карбонатного раствора на вторую и третью оксалатную очистку в оборудование камеры № 10. В реакторе камеры № 9 измерялись концентрация плутония на основе отбора и анализа проб и объем раствора, что имело большое значение для учета плутония, выполнения технологических регламентов и предотвращения ядерной аварии. Фактически реактор камеры № 9 использовался не только для первой оксалатной очистки, но и для подготовки каждой регламентной операции в камере № 10.

Схема оборудования в камере № 10 представлена на рисунке 13.

Рисунок 13. Схема размещения оборудования в камере № 10.

Реакторы Р1 и Р2 предназначены для приема карбонатного раствора из камеры № 9 и для второго оксалатного осаждения плутония. Оба реактора имели одинаковую цилиндрическую геометрию диаметром 0,4 м и высотой 0,5 м. К каждому реактору Р1 и Р2 подведены: 1) линия подачи карбонатного раствора; 2) линия подачи жидких химических реактивов (не показана на рисунке); 3) линия загрузки (через воронку) сухих реактивов в виде порошков; 4) линия выдачи азотнокислого раствора с концентрацией плутония ~100 мг/л (маточник) в сборники для последующего упаривания и переработки (не показаны на рисунке); 5) линия выдачи карбонатного раствора в монжюс. Оба реактора оснащены мешалкой, мерником химреактивов, смотровым устройством, управляющими вентилями, линией вакуума.

Реактор Р3 был предназначен для приема карбонатного раствора из монжюса, имел те же коммуникации, что и реакторы Р1, Р2. По геометрии реактор Р3 представлял собой цилиндр диаметром 0,3 м и высотой 0,4 м. В нем производилась третья оксалатная очистка плутония с выдачей маточника в сборники, а карбонатного раствора в передаточную емкость. Последняя имела размеры: диаметр 0,25 м, высота 0,3 м. Через нее производилась передача оксалатной пульпы из реактора Р3 на нутч-фильтр.

Нутч-фильтр был единственным аппаратом в камере № 10, имевшим безопасную геометрию (объем 4 л), и предназначался для фильтрования конечной оксалатной пульпы, далее направлявшейся на прокалку.

Вне камеры № 10 находился монжюс для приема карбонатных растворов из реактора Р1 или Р2, отбора проб на анализ плутония и передачи раствора в реактор Р3. Размеры монжюса: диаметр 0,35 м, высота 0,45 м. Монжюс, помимо линий загрузки и выдачи, имел линию вакуума и линию сжатого воздуха. В таблице 4 представлены параметры емкостей, вовлеченных в аварию.

Таблица 4. Параметры емкостей, вовлеченных в аварию

05.12.1960 г. в 22 ч 25 мин в процессе передачи раствора из реактора Р2 в монжюс в последнем возникла самоподдерживающаяся цепная реакция. В этот момент в помещении работал один оператор.

По результатам расследования аварии были установлены следующие исходные события.

В течение 4-х дней с 01.12.60 г. по 04.12.60 г. в реакторе камеры № 9 методом накладок были проведены четыре операции оксалатного осаждения плутония из азотнокислых растворов. Операторы должны были получить в этом реакторе осадок с массой плутония не более 400 г, которая была нормой загрузки для любого одного реактора Р1 или Р2 в камере № 10. Возрастание массы плутония в реакторе камеры № 9 представлено ниже в таблице 5 по дням.

Очевидно, что уже после третьей операции масса плутония в реакторе превысила норму (400 г). Технолог, который отвечал за соблюдение регламентов загрузки, обнаружив их превышение, внес изменения в записи результатов анализов. В итоге, в технологической карте была записана заниженная масса плутония: 400 г вместо 683 г.

После этого оксалат плутония растворили и в виде карбонатного раствора полностью передали из реактора камеры № 9 в реактор Р2 камеры № 10. Тот же технолог позднее дал указание оператору передать в реактор Р2 дополнительно 30 л карбонатного раствора с массой плутония 115 г. Таким образом, перед оксалатным осаждением масса плутония в реакторе Р2 составляла ~800 г. Проведя операции осаждения и растворения в реакторе Р2, карбонатный раствор Pu(CO3)2 начали передавать в монжюс, и к концу передачи в 22 ч 25 мин 05.12.1960 г. в цехе сработали все датчики системы аварийной сигнализации о возникновении цепной реакции деления, порог срабатывания которых был равен 30 мкР/с.

Следует отметить, что за несколько минут до первого пика мощности ближайший к монжюсу датчик (расстояние около 4,5 м) начал срабатывать и возвращаться в исходное состояние. Заметив это, оператор, не включая вакуум, вышел из помещения и пошел доложить начальнику смены о неустойчивой работе прибора контроля мощности дозы ?-излучения. Это спасло жизнь оператору, так как в этот момент уже началась эвакуация персонала всего цеха.

Позже прибыли дозиметристы. Измерения проводились дистанционно из коридора на расстоянии 10–15 м от места аварии с помощью портативного прибора ПМР-1; они показали, что уровень радиации превышает верхний предел прибора 18 Р/час.

Руководство объекта, начальник службы радиационной безопасности и специалисты прибыли на место аварии спустя час после срабатывания САС. Сразу по прибытии был произведен опрос персонала, бывшего на месте аварии, проверка показаний приборов с целью локализации аварии и выявления ее причин. Было установлено, что авария произошла в помещении, где находились камеры 9 и 10, и местом аварии, по всей вероятности, являлся монжюс. Приборы показывали, что уровень радиации в помещении составлял 1,5–1,8 Р/час.

Амплитуда осцилляций мощности от пика до минимума изменялась более, чем в 10 раз. Укрепив на длинном шесте интегральный дозиметр, дозиметристы просунули его в помещение из коридора во время одного из минимумов. По времени экспозиции было определено значение мощности дозы на расстоянии двух метров от монжюса, которая составила 10 Р/час. Из-за сильного нервного напряжения персонал не фиксировал изменения мощности.

После первого пика мощности цепная реакция носила осциллирующий характер. Примерно через 10 минут после 1 пика мощность дозы на расстоянии ~10–15 метров от монжюса составляла более 5000 мкР/с. По грубым оценкам, это соответствует энерговыделению до 1017 делений за указанный интервал.

В течение двух часов наблюдались осцилляции мощности по показаниям датчика ?-излучения, находившегося на расстоянии 4,5 м от монжюса. Диапазон его показаний периодически менялся в пределах 500—5000 мкР/с, что свидетельствовало об установлении квазистационарного уровня мощности. Предложение об отключении вакуумной системы, реализованное через 1,5 часа после начала аварии, не повлияло на систему, так как осцилляции продолжались.

Было принято решение о передаче нескольких литров раствора из монжюса в реактор Р3. Это ограничение объема раствора для передачи объяснялось тем, что реактор Р3, как и монжюс, также имел опасную геометрию. Однако эту операцию можно было выполнить, только находясь в помещении у камеры № 10.

В 0 ч 15 мин 6.12.1960 г. три оператора вбежали в это помещение и произвели все необходимые переключения, затратив на это не более 15 с. При этом мощность дозы ?-излучения рядом с монжюсом была около 4000 мкР/с. Затем был включен компрессор сжатого воздуха, и из монжюса в реактор Р3 было передано около 5 л раствора. После передачи раствора пики мощности цепной реакции прекратились.

В следующую смену дозиметрической службой было принято решение о возможности входа в помещение, так как датчики дозиметрической системы показывали уровень менее 0,15 Р/час. Соблюдая соответствующую инструкцию, три оператора вошли в помещение. Намеренно сокращая время пребывания, они с помощью трех 20-литровых бутылей по временно установленным шлангам сумели перелить 5 литров раствора в бутыль, а затем выполнили еще две передачи — 6 л и 8 л — из монжюса. Три 20-литровые бутыли были помещены в специально организованное место хранения и затем направлены на переочистку.

По результатам измерений в процессе подведения баланса плутония в камерах № 9 и № 10 и коммуникациях оказалось, что в монжюсе к началу ядерной аварии было около 900 г плутония, и только в виде раствора.

Было проведено расследование с целью восстановления последовательности событий, приведших к аварии. В ходе расследования было установлено, что авария произошла в результате превышения нормы загрузки в реакторе Р0 камеры № 9. В таблице 5 представлена хронология событий, приведших к перегрузке Р0.

Таблица 5. Последовательность формирования партий, приведшая к превышению загрузки в реакторе Р0 в камере № 9

После аварии ловушка вакуумной системы, монжюс и реакторы Р2 и Р3 были тщательно промыты. В результате промывки образовалось 40 л промывных растворов, в которых было обнаружено 180 г плутония. Было также проанализировано содержание Pu в трех 20-литровых бутылях, наполненных из монжюса и реактора Р3. Результаты анализа представлены в таблице 6.

Таблица 6. Результаты анализа аварийного раствора из бутылей

Чтобы оценить объем раствора и массу плутония, находившегося в монжюсе во время аварии, воспользовались данными из таблицы 6 (714 г) и содержанием плутония в промывной воде (180 г), что дало 894 г плутония в 19 л раствора и осадка. В результате промывки реактора Р3 образовалось 10 л воды, содержащей 43 г плутония в нерастворимом осадке. Общая масса плутония в промывной воде плюс в трех 20-литровых бутылях составила 1003 г, с учетом того, что 66 г плутония было в реакторе Р2.

При работах по ликвидации аварии и ее последствий пять человек облучились дозой до 2Р. Разрушения оборудования не произошло. Сразу после аварии монжюс был заменен на новый аппарат безопасной геометрии.

Радиоактивного загрязнения в результате аварии не произошло.

Полное число делений, согласно грубым оценкам, составило около 2–3 X 1017.