Как же поймали антинейтрино?

We use cookies. Read the Privacy and Cookie Policy

Как же поймали антинейтрино?

Сделанный выше вывод явился не очень приятной новостью. Сколько бы ни выводил физик необходимость существования нейтрино и антинейтрино из законов сохранения, он был бы по-настоящему счастлив, только действительно обнаружив крошечные частицы прямым наблюдением. Но, чтобы продемонстрировать их существование, он должен сначала поймать хотя бы одну частицу, то есть заставить ее провзаимодействовать с какой-нибудь другой частицей, чтобы можно было обнаружить результат этого взаимодействия. А поскольку поймать нейтрино или антинейтрино фактически было невозможно, возникло серьезное сомнение в реальности их существования!

В результате физик спас свое представление о строении Вселенной, которое развивалось на протяжении трех столетий, настаивая на существовании чего-то, что нужно было принять на веру. Он доказывал существование нейтрино на основе своих теорий и спасал свои теории, утверждая существование нейтрино. Получился «замкнутый круг». Причины для сомнений и неопределенности оставались. Было чрезвычайно важно разработать какой-нибудь метод регистрации нейтрино или антинейтрино, если это вообще возможно.

Брешь в почти непроницаемой броне неуловимого нейтрино была пробита с помощью слова «в среднем». Я говорил, что до поглощения антинейтрино в среднем проходит через слой твердого свинца толщиной 3500 световых лет. Но это только в среднем. Некоторые антинейтрино, возможно, проходят более короткий путь, другие — более длинный, и лишь немногие пройдут до поглощения или очень маленькое, или очень большое расстояние. Следовательно, необходимо сосредоточить внимание на бесконечно малой доле антинейтрино, поглощающихся в такой толщине вещества (скажем, несколько метров), которую легко создать в лаборатории. Чтобы этот бесконечно малый процент содержал возможно большее число антинейтрино, необходимо иметь очень мощный источник этих частиц. Таким мощным источником антинейтрино является ядерный реактор. Образующиеся в реакторе избыточные нейтроны рано или поздно распадаются на протоны, электроны и антинейтрино. Когда реактор работает на полную мощность, непрерывно рождается огромное число антинейтрино. В 1953 году группа американских физиков, возглавляемая Клайдом Коуэном и Фредериком Рейнесом, начала опыты по регистрации антинейтрино. В качестве источника частиц они использовали ядерный реактор в Саванна-Ривер, штат Южная Каролина. Этот реактор испускал каждую секунду примерно 1018 антинейтрино.

Рис. 7. Детектирование антинейтрино.

Для такого несметного числа антинейтрино нужно было создать мишень, богатую протонами. Простейшей естественной мишенью является вода. Каждая молекула воды состоит из двух атомов водорода, ядра которых представляют собой протоны, и атома кислорода. Коуэн и Рейнес использовали пять баков воды длиной 1,9 м и шириной 1,4 м. Толщина баков была различной (рис. 7). Два тонких бака высотой 7,6 см использовались в качестве мишени. Три других бака высотой 60 см служили детектором. Баки располагали в таком порядке: детектор — мишень — детектор — мишень — детектор. Вода в баках-мишенях содержала небольшое количество растворенного хлористого кадмия. Баки-детекторы содержали раствор сцинтиллятора — вещества, которое излучает часть энергии, полученной им при поглощении субатомной частицы, в виде короткой вспышки света. Такой «двойной сэндвич» из баков располагался на пути потока антинейтрино из реактора. Оставалось только ждать. Если антинейтрино действительно существуют, каждые Двадцать минут (в среднем) одно из них должно поглотиться протоном. Но баки подвергались непрерывному действию космического излучения из межпланетного пространства, бомбардировке частицами, испускаемыми небольшими количествами радиоактивных веществ, находящихся в воздухе, строительных материалах, почве. Вся трудность заключалась в том, чтобы на всем этом фоне событий, происходивших внутри баков с водой, выделить поглощение антинейтрино.

Вначале нежелательный субатомный «шум» не позволял обнаружить поглощение антинейтрино. Постепенно создавалось все более и более эффективное экранирование, чтобы избавиться от нежелательного излучения и частиц. Конечно, антинейтрино никакое экранирование, никакие толщины металла или бетона не могли задержать, и в конце концов «шум» уменьшился до уровня, который уже не скрывал слабый «шепот» очень редких антинейтрино, случайно захваченных протонами. Но этот шепот надо было еще идентифицировать.

При поглощении антинейтрино протоном образуется нейтрон и позитрон — комбинация частиц, которую легко отличить. Как только в одном из баков-мишеней образуется позитрон, он взаимодействует с электроном меньше, чем за одну миллионную секунды, при этом возникает два фотона, каждый из которых имеет энергию 0,51 МэВ. Согласно закону сохранения импульса, два фотона должны разлетаться в точно противоположных направлениях: если один из них из бака-мишени попадает в верхний бак-детектор, то другой должен попасть в нижний бак-детектор. В каждом баке-детекторе возникает вспышка света. Эти вспышки тотчас же автоматически регистрируются сотней или более фотоумножителей, расположенных вокруг баков с водой.

А что же происходит с нейтроном? Обычно он просто блуждает среди молекул воды (которые очень редко поглощают нейтрон), сталкиваясь с ними, пока самопроизвольно не распадется в среднем через 12,8 мин после своего возникновения. Однако ждать так долго ни к чему, так как распад может произойти на несколько минут раньше или позже. Вот здесь-то и приходит на помощь хлористый кадмий в баке-мишени. Нейтрон блуждает до тех пор, пока не столкнется с атомом кадмия, тогда он почти мгновенно поглощается. Происходит это в течение нескольких миллионных долей секунды после аннигиляции позитрона — срок довольно короткий и все же достаточный, чтобы разделить во времени два события: аннигиляцию позитрона и поглощение нейтрона. При поглощении нейтрона атомом кадмия выделяется энергия, которая тотчас излучается в виде трех или четырех фотонов с суммарной энергией 9 Мэв.

Итак, Коуэн и Рейнес наблюдали следующую картину: сначала одновременно появлялись два фотона с энергией 0,5 Мэв каждый, которые регистрировались двумя фотоумножителями на противоположных сторонах баков с водой, затем через несколько миллионных долей секунды следовало одновременное образование трех фотонов с энергией 3 Мэв каждый (иногда четырех фотонов с энергией 2,25 Мэв каждый). Никакое другое субатомное взаимодействие не приводило к такой последовательности событий. И если был зарегистрирован именно такой ход событий, разумно было заключить, что протон поглощает антинейтрино, следовательно, антинейтрино действительно существует.

Но тут в осторожных умах экспериментаторов возникла другая мысль. А что если такая последовательность событий вызвана не одним субатомным взаимодействием, а двумя?

Предположим, что каким-то образом возник позитрон, а через несколько миллионных долей секунды атом кадмия поглотил нейтрон, который существовал независимо от позитрона. В таком случае появление двух, а затем трех фотонов явилось бы результатом не одного взаимодействия (антинейтрино с протоном), а двух совершенно несвязанных взаимодействий. Какое же взаимодействие наблюдали Коуэн и Рейнес?

Экспериментаторы решили проблему, произведя свои измерения сначала с работающим реактором, а затем с выключенным. Если реактор выключить, на баки будет действовать шум, а бомбардировка их потоком антинейтрино прекратится. (На самом деле в окружающем пространстве всегда имеются антинейтрино, но их число намного меньше числа антинейтрино вблизи работающего реактора.) Следовательно, при выключенном реакторе продолжали бы регистрироваться двойные совпадения, а поглощение антинейтрино прекратилось бы.

Оказалось, что с выключенным реактором регистрировалось на 70 событий в день меньше, чем с включенным. Значит, в день поглощалось и регистрировалось 70 антинейтрино (по одному каждые двадцать минут). Результаты эксперимента можно было считать несомненным доказательством, и в 1956 году было сделано сообщение, что спустя целых двадцать пять лет после того, как Паули впервые предсказал существование антинейтрино, такая частица была наконец зарегистрирована. Об этом событии обычно говорят как о «регистрации нейтрино», хотя было зарегистрировано антинейтрино. Однако после того, как «изловили» антинейтрино, физики считают, что существование нейтрино не вызывает сомнения.