Сохранение четности
Сохранение четности
До сих пор, рассказывая о нейтрино, мы использовали семь законов сохранения: 1) импульса, 2) момента количества движения, 3) энергии, 4) электрического заряда, 5) барионного числа, 6) электронного числа, 7) мюонного числа.
Это не все законы сохранения, используемые физиками-ядерщиками, но, за одним исключением, их вполне достаточно для рассказа о нейтрино. Исключение связано с величиной, называемой четностью и представляющей собой чисто математическое свойство, описать которое наглядно довольно трудно. Для нас вполне достаточно знать, что каждая частица может быть четной или нечетной.
Удобство введения таких терминов состоит в том, что четности складываются так же, как четные и нечетные числа в арифметике. Например, два нечетных числа в сумме всегда дают четное число, два четных числа при сложении тоже дают четное число:
нечетное + нечетное = четное;
четное + четное = четное;
нечетное + нечетное = четное + четное;
Кроме того, нечетное и четное числа при сложении дают нечетное число:
нечетное + четное = нечетное;
нечетное + четное = нечетное + четное.
По-видимому, при взаимодействии частиц независимо от сложности процесса действуют такие же правила. Если нечетная частица распадается на две частицы, то одна из них оказывается нечетной, а другая — четной. Если же четная частица распадается на две частицы, то обе они оказываются либо четными, либо нечетными.
Поскольку эти правила выполняются, говорят о законе сохранения четности, который утверждает, что четность замкнутой системы остается постоянной.
Неприятности появились после открытия K-мезонов (которые иногда называют каонами) в конце 40-х годов. Эти мезоны тяжелее пионов, их масса в 966 раз больше массы электрона, но они в два раза легче нейтрона и протона, K-мезоны распадаются по-разному. Иногда K-мезон распадается на два пиона, а иногда — на три. Два пиона образуют четную группу частиц, а три — нечетную (так как пион — нечетная частица). Чтобы не входить в противоречие с законом сохранения четности, предположили, что имеются два типа K-мезонов, один из которых нечетный и распадается на три пиона, а другой четный и распадается на два пиона. Типы мезонов стали различать с помощью греческих букв: нечетный K-мезон назвали ?-мезоном, а четный — ?-мезоном. Во всех отношениях, за исключением четности, два мезона были совершенно одинаковыми. Но достаточно ли одной четности, чтобы отличить одну частицу от другой? Может быть, существует только одна частица, а не две, и четность не обязательно сохраняется? В 1956 году китайские физики Цзун-дао Ли и Чжень нин Янг, работающие в США, выдвинули теоретические соображения о том, что, хотя четность сохраняется в сильных взаимодействиях, она не обязательно должна сохраняться в слабых взаимодействиях (а распад K-мезонов является, конечно, примером слабого взаимодействия).
Для проверки гипотезы Ли и Янга нужно было произвести эксперимент, результат которого зависел бы от того, сохраняется четность или нет (аналогично тому, как шестью годами позже возникла необходимость в связи с различием между электронными и мюонными нейтрино для проверки справедливости закона сохранения электронного и мюонного чисел).
Рис. 10. Отличие правого от левого.
Предложенный экспериментальный метод был основан на возможности отличить правое от левого (рис. 10), которая зависит от того, совпадает или не совпадает предмет со своим зеркальным изображением. Ваша левая рука, отраженная в зеркале, похожа на правую, а зеркальное изображение правой руки похоже на левую. Но ни одна из рук не похожа на свое зеркальное изображение из-за того, что большой палец находится только на одной стороне руки и делает ее несимметричной. Именно поэтому можно говорить о «левой» руке и о «правой» руке. Если бы на ваших руках большие пальцы были с обеих сторон, то каждая рука совпадала бы со своим зеркальным изображением и правое нельзя было бы отличить от левого.
Можно показать, что если пространственная четность сохраняется, в мире субатомных частиц нельзя отличить правое от левого, т. е. не существует ни «правых» ни «левых» частиц и все частицы ведут себя совершенно симметрично. Если бы они распадались и испускали частицы, последние разлетались бы во всех направлениях одинаково. Если же четность не сохраняется, должны существовать левые и правые частицы, причем первые при распаде должны были бы испускать частицы преимущественно в одном направлении, а вторые — в противоположном.
Необходимый эксперимент был проведен другим китайским физиком, работающим в США, мадам Цзянь сюн By. Атомы, излучающие ?-частицы (посредством слабого взаимодействия), охлаждались до температуры, близкой к абсолютному нулю, и помещались в магнитное поле. Поле выстраивало все атомы в одном направлении, а из-за низкой температуры им не хватало энергии, чтобы изменить это направление. За сорок восемь часов эксперимент дал ответ: электроны испускаются асимметрично, в слабых взаимодействиях пространственная четность не сохраняется, а ?-мезон и ?-мезон — одна и та же частица, которая в одних случаях распадается на нечетную группу мезонов, а в других — на четную [22]. Вскоре и другие эксперименты подтвердили несохранение пространственной четности, по крайней мере в слабых взаимодействиях, а в 1959 году американский физик Морис Голдхабер доказал, что нейтрино и электроны — «левые» частицы, а антинейтрино и позитроны — «правые».
Но эксперименты не дали ответ на многие вопросы. Почему частицы такие? Почему нейтрино, которое участвует только в слабых взаимодействиях, бывает «правым» или «левым»? Что является причиной этой асимметрии и почему она существует в слабых взаимодействиях и не существует в сильных?
Как видите, успехи физиков приводят не только к решению проблем, но и задают им новые загадки. Почему протон в 1836,11 раз тяжелее электрона? Почему электронов гораздо больше, чем позитронов? Почему мюон в 207 раз тяжелее электрона, а во всем остальном похож на него?
Чем же различаются нейтрино мюонного типа и нейтрино электронного типа, если их масса, заряд и спин одинаковы?
Почему частицы симметричны в сильных взаимодействиях и асимметричны в слабых?
Ни на один из перечисленных вопросов до сих пор нет ответа. Но я не сожалею, что должен закончить рассказ о нейтрино вопросами. Что это была бы за наука без загадок, которые вдохновляют и возбуждают ученого? И откуда придут великие и волнующие открытия, если не из этих же самых загадок?
Загадки Вселенной существуют и, вероятно, будут существовать всегда. Полного и окончательного ответа мы, может, так никогда и не получим. Но с каждым поколением загадки становятся все более утонченными, а игра все более стоящей и восхитительной.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
Глава 4 СОХРАНЕНИЕ ЭНЕРГИИ
Глава 4 СОХРАНЕНИЕ ЭНЕРГИИ § 1. Что такое анергия?§ 2. Потенциальная энергия тяготения§ 3. Кинетическая энергия§ 4. Прочие формы энергии§ 1. Что такое энергия?С этой главы, покончив с общим описанием природы вещей, мы начнем подробное изучение различных физических вопросов.
Сохранение импульса
Сохранение импульса Теперь вы, вероятно, начнете подозревать, что «сохранение суммарной скорости» будет иметь место при всех условиях. Подождите — мы еще не рассмотрели всевозможные ситуации.Предположим, например, что шар ударяет о борт бильярдного стола и отскакивает
Сохранение момента количества движения
Сохранение момента количества движения Движение не обязательно должно представлять собой изменение положения. Если бильярдный шар быстро вращается, не трогаясь с места, было бы несправедливо считать такой шар неподвижным. Кроме того, шар может двигаться по прямой линии
Сохранение массы
Сохранение массы При рассмотрении импульса мы имели дело с тремя величинами: скоростью, массой и их произведением, т. е. самим импульсом.С точки зрения сохранения мы рассмотрели две из них: импульс, который сохраняется, и скорость, которая не сохраняется. А что происходит
Сохранение энергии
Сохранение энергии Скорость входит не только в импульс. Движущееся пушечное ядро разобьет каменную стену, хотя такое же ядро, но неподвижное ничего не сделает со стенкой, даже соприкасаясь с ней. Движущееся пушечное ядро совершает работу, а идентичное с ним во всем, кроме
Сохранение электрического заряда
Сохранение электрического заряда В атомном мире существуют, насколько нам известно, три важных закона сохранения, которые выполняются как в повседневной жизни, так и в огромной окружающей нас Вселенной.К ним относятся законы сохранения импульса, сохранения момента
Сохранение барионного числа
Сохранение барионного числа До сих пор мы не ответили на вопрос: почему протон стабилен? Теперь мы можем к этому вопросу добавить другой: почему стабилен антипротон? Совершенно неуместно говорить о том, что протон имеет наименьшую массу, с которой связан положительный
СОХРАНЕНИЕ МАССЫ И ЭНЕРГИИ
СОХРАНЕНИЕ МАССЫ И ЭНЕРГИИ 1.2. Существуют два принципа, ставшие краеугольными камнями здания современной науки. Первый принцип материя не создается и не уничтожается и лишь переходит из одного вида в другой был высказан в XVIII веке и знаком каждому изучающему химию; он