Открытие мезона
Открытие мезона
Пока обменные частицы не найдены и их существование не продемонстрировано каким-либо образом, они остаются не более чем теоретическим вымыслом. Мы знаем, что виртуальная частица остается виртуальной толь-ко потому, что системе, из которой она возникает, не хватает энергии, чтобы сделать ее реальной. Если же системе сообщить энергию, которая превратилась бы в массу частицы, последняя находилась бы тогда вне сферы действия принципа неопределенности, и ее можно было бы обнаружить. Однако для этого атомному ядру необходимо сообщить по крайней мере 125 Мэв, а в начале 30-х годов получать такие энергии еще не умели. В то время единственным источником больших энергий были космические лучи, бомбардирующие Землю из межпланетного пространства. Энергия некоторых космических частиц достигает сотен и миллиардов мегаэлектронвольт. (Максимальные энергии космических частиц остаются недостижимыми даже сейчас, когда построены огромные ускорители, способные создавать пучки субатомных частиц с энергиями 30 000 Мэв и выше.)
Теперь известно, что частицы космических лучей представляют собой голые атомные ядра, которые медленно ускоряются за время своего длинного путешествия через межзвездное пространство (по-видимому, за счет переменных магнитных полей звезд и галактик). (Поскольку вещество Вселенной состоит в основном из водорода и гелия, не удивительно, что космические лучи содержат приблизительно 78 % протонов (ядра водорода), 20 % ?-частиц (ядра гелия) и 2 % более тяжелых ядер.
Положительно заряженные ядра представляют собой первичное излучение. Когда частицы первичного излучения попадают в атмосферу Земли, их огромные энергии приводят к ряду изменений в ядрах, с которыми они сталкиваются. Из ядер выбиваются быстрые частицы, образующие вторичное излучение. Было бы не удивительно, если бы вторичное излучение состояло из быстрых электронов и фотонов большой энергии, но некоторые свойства этого излучения свидетельствуют против.
Физики, исследовавшие космические лучи в начале 30-х годов, строили догадки (совершенно независимо от теории ядерного поля Юкавы) о существовании частиц тяжелее электрона, но легче протона. Такие частицы с промежуточной массой были нужны для объяснения данных, полученных в процессе исследования космических лучей. В 1935 году, вскоре после того, как была опубликована теория Юкавы, Андерсон (который тремя годами раньше открыл позитрон) занимался исследованием космических лучей на Пайк-Пике (штат Колорадо). В следующем году, изучая полученные фотографии, он обнаружил треки с кривизной, которую следовало бы ожидать от частиц с промежуточной массой. Частица оказалась приблизительно в 207 раз тяжелее электрона. Андерсон назвал ее мезотроном, от греческого слова mesos, что означает промежуточный, но название быстро сократили до слова мезон, которое и стало общепринятым.
Вначале думали, что частица Андерсона является обменной частицей Юкавы, хотя масса ее была меньше, чем предсказывал Юкава. К сожалению, данные противоречили этому. Сама природа ядерного поля предполагала что обменная частица Юкавы должна очень интенсивно и быстро взаимодействовать с любым нуклоном, встречающимся на ее пути. Поэтому она не сможет глубоко проникнуть в вещество, так как первое же встречное ядро поглотит ее. Однако оказалось, что частица Андерсона легко проникает в вещество, проходя, например, сквозь слой свинца значительной толщины. При этом она сталкивается со многими ядрами и не поглощается ими, значит, она не является ядерной обменной частицей.
Горечь разочарования исчезла в 1948 году благодаря работе группы английских физиков, возглавляемой Сеслом Фрэнком Пауэллом, которая изучала космические лучи на больших высотах в Боливийских Андах. Они зарегистрировали частицы, более тяжелые, чем мезоны Андерсона, частицы, имеющие массу приблизительно в 270 раз больше массы электрона.
Новая частица обладала массой, близкой к предсказанной Юкавой, и достаточно интенсивно взаимодействовала с веществом. Ядерной обменной частицей оказался мезон Пауэлла, а не Андерсона. Так была подтверждена теория Юкавы и доказано существование ядерного поля.
Пауэлл назвал свою частицу ?-мезоном, а частица Андерсона — первый открытый мезон — впоследствии была названа ?-мезоном.
Со времен были открыты другие типы мезонов и стало очевидно, что все субатомные частицы можно разделить на три группы, а не на две. Кроме лептонов и барионов появились мезоны.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
ОТКРЫТИЕ ДЮЛОНГА И ПТИ
ОТКРЫТИЕ ДЮЛОНГА И ПТИ В истории физики 1819 г. отмечен свершением: французские ученые Пьер Луи Дюлонг и Алексис Терез Пти опубликовали результаты своих опытов по измерению теплоемкости твердых тел. Обобщая эти результаты, они сформулировали фундаментальный закон,
ОТКРЫТИЕ ЭКСИТ
ОТКРЫТИЕ ЭКСИТ В 1931 г. член-корреспондент АН СССР Яков Ильич Френкель теоретически предсказал весьма интересное физическое явление. Решая задачу о возбуждении атомов в идеальном кристалле, он показал, что возбужденное состояние, возникшее у какого-либо атома такого
Открытие Рентгена
Открытие Рентгена Конец XIX в. ознаменовался повышенным интересом к явлениям прохождения электричества через газы.Еще фарадей серьезно занимался этими явлениями, описал разнообразные формы разряда, открыл темное пространство в светящемся столбе разреженного газа,
Открытие радиоактивности
Открытие радиоактивности Открытие рентгеновских лучей произошло 8 ноября 1895 г. Сообщение об открытии датировано 28 декабря. Более полутора месяцев ученый тщательно исследовал неведомые лучи. Ему удалось установить, что они возникают там, где стенки трубки сильно
Открытие квантов
Открытие квантов Открытие рентгеновских лучей (Рентген, 1895 г.), радиоактивности (Беккерель, 1896 г.), электрона (Том-сон, 1897 г.), радия (Пьер и Мария Кюри, 1898 г.) положили начало изучению атомной и ядерной физики. В 1899 г. Э. Резерфорд выступил с большой статьей о радиоактивности,
Открытие атомного ядра
Открытие атомного ядра Рассмотрим несколько подробнее одно из фундаментальных открытий Резерфорда —открытие атомного ядра и планетарной модели атома. Мы видели, что уподобление атома планетной системе делалось еще в самом начале XX в. Но эту модель было трудно
Открытие спина
Открытие спина В 1925 г. в физику было введено новое фундаментальное понятие спина. Это понятие было введено Уленбеком и Гаудсмитом, работавшими летом 1925 г. у Эренфеста в Лейдене. К этому времени В. Паули опубликовал свою работу, содержащую формулировку принципа запрета,
Глава 8 Открытие Вселенной
Глава 8 Открытие Вселенной Новый физический объект — ВселеннаяСлово «вселенная» настолько обычно в русском языке, что его не выкинешь из народной песни: Всю-то я вселенную проехал, Нигде милой не нашел. ………………………………… За твои за глазки голубые Всю вселенную
ОТКРЫТИЕ ЭЛЕКТРОНОВ И КВАРКОВ
ОТКРЫТИЕ ЭЛЕКТРОНОВ И КВАРКОВ Все объекты в атоме — электроны, обращающиеся вокруг ядра, и кварки, удерживаемые глюонами внутри протонов и нейтронов — были экспериментально обнаружены учеными при помощи Миниатюрных «зондов» с высокими энергиями. Мы уже видели, что
ОТКРЫТИЕ КВАРКОВ
ОТКРЫТИЕ КВАРКОВ С 1967 по 1973 г. Джером Фридман, Генри Кендалл и Ричард Тейлор провели серию экспериментов, которые помогли установить существование кварков внутри протонов и нейтронов. Эксперименты проводились на линейном ускорителе, который, в отличие от прежних
Глава 5 Открытие невидимки
Глава 5 Открытие невидимки Изгнание электронаНаука — та же армия. Наука никогда не ведет наступление с одинаковой силой по всем фронтам. Сегодня — прорыв оборонительной полосы на одном участке фронта, завтра — на другом, послезавтра — на третьем. Только эти «сегодня»,
ОТКРЫТИЕ БЕНЗОЛА
ОТКРЫТИЕ БЕНЗОЛА Одно из самых важных открытий Фарадея в области химии было связано с его братом, китами и прозрачной бесцветной жидкостью, имевшей запах миндаля.В середине 1820-х годов старший брат Фарадея, Роберт, начал работать в компании по поставкам газа,