11.6. Ускоренное расширение Вселенной. Темная энергия. Будущее Вселенной

Достаточно давно ученые поняли, что крайне важно измерить с помощью наблюдений, как менялся темп расширения Вселенной (т. е. как эволюционировал масштабный фактор). Для этого нужен надежный способ определения расстояний до далеких объектов, независимый от измерения красного смещения.

Измерение расстояний в космологии – непростая задача. Однако в конце 1970-х – 1980-х гг. появились важные результаты по изучению целого класса астрономических источников, который мог бы помочь решить эту проблему, – это сверхновые типа Ia. С точки зрения наблюдений они характеризуются отсутствием линий водорода и наличием сильных линий кремния в спектре.

Сверхновые типа Ia – это термоядерные взрывы белых карликов, а поскольку в среднем белые карлики взрываются при сходных значениях массы, то такие сверхновые имеют похожие кривые блеска и максимальную светимость[15]. По этой причине такие вспышки называют стандартными свечами. В результате почти двух десятилетий исследований (начиная с работы Юрия Псковского в 1977 г.) астрономы научились по изменению блеска и по спектру определять максимальную светимость сверхновых Ia. Знание светимости в максимуме блеска позволяет из наблюдений получить независимую оценку расстояния до них (а значит, и до галактик, в которых они находятся).

Сверхновые типа Ia – это термоядерные взрывы белых карликов.

На протяжении 1990-х гг. несколько групп ученых работали над использованием сверхновых Ia в космологии в качестве стандартных свечей. В итоге в 1997–1999 гг. были получены результаты, позволившие открыть ускорение расширения Вселенной. Наблюдения показали, что сверхновые на красном смещении больше 0,5 находятся дальше (выглядят слабее), чем это следовало бы из стандартной на тот момент модели, в которой Вселенная все время замедляет свое расширение. Чтобы сверхновые оказались на более далеком расстоянии, необходимо, чтобы Вселенная последние несколько миллиардов лет расширялась все быстрее и быстрее. За эти работы Сол Перлмуттер (Saul Perlmutter), Адам Рис (Adam Riess) и Брайан Шмидт (Brian Schmidt) в 2011 г. получили Нобелевскую премию по физике.

Ускоренное расширение Вселенной было открыто в 1997–1999 гг. по результатам наблюдений сверхновых типа Ia.

Темп расширения удобно характеризовать тем, как растет масштабный фактор. Напомним, что эта величина характеризует изменения так называемого собственного расстояния в космологии, т. е. физического расстояния между объектами в заданный момент времени. Собственное расстояние между галактиками в данный момент времени, t1, настолько больше расстояния между ними в какой-то прошлый момент t2, насколько вырос масштабный фактор: d(t1)/d(t2) = a(t1)/a(t2), где d – расстояние, а величина a – масштабный фактор. Оказалось, что первые примерно 7 млрд лет своего существования Вселенная (это примерно соответствует z = 0,75) расширялась с замедлением (масштабный фактор рос все медленнее и медленнее), после чего перешла к ускоренному расширению. Сейчас этот результат подтвержден несколькими независимыми методами и поэтому является надежно установленным фактом.

Расширение Вселенной ускоряется последние 6–7 млрд лет.

Такой поворот событий не был полной неожиданностью. Еще в 1917 г. Эйнштейн в своей работе ввел в уравнения дополнительное слагаемое, эффективно работающее как «антигравитация». Такое явление возникает в общей теории относительности, если соответствующая среда имеет отрицательное давление («средой» в данном случае может быть и физический вакуум). Слагаемое, обозначенное греческой буквой лямбда (?), получило наименование «космологическая постоянная». Важной особенностью космологической постоянной является то, что плотность ее энергии (а значит, и ее отрицательное давление) не изменяется при расширении (или сжатии) Вселенной.

Жорж Леметр рассмотрел в 1927 г. ряд космологических моделей с учетом ?, в том числе и такую, которая очень близка к современной (ускорение Вселенной сначала замедляется, а потом ускоряется). Кроме того, начиная примерно с середины 1980-х гг. появлялись различные аргументы в пользу существования космологической постоянной (или ее аналога). Тем не менее обнаружение ускоренного расширения Вселенной можно считать главным астрономическим открытием конца XX в.

Возможность ускоренного расширения Вселенной рассматривалась теоретиками уже давно.

Причина ускоренного расширения доподлинно не известна. Стандартным подходом к его объяснению является гипотеза так называемой темной энергии, расширяющая понятие космологической постоянной. В описывающее расширение Вселенной уравнение Фридмана добавляется слагаемое, соответствующее среде с положительной плотностью, но отрицательным давлением. Физически появление такой «среды» может быть связано со свойствами вакуума (космологическая постоянная) или же это может быть результатом присутствия какого-то физического поля (в последнем случае темная энергия может эволюционировать со временем).

В первую половину жизни Вселенной, исключая несколько десятков тысяч лет в самом начале, в ее плотности доминировало вещество (темное плюс барионное). Однако по мере расширения плотность вещества падала, а плотность темной энергии оставалась неизменной (здесь мы рассматриваем простой случай космологической постоянной). Поэтому относительный вклад темной энергии в динамику расширения рос. В какой-то момент «антигравитация», связанная с темной энергией, стала доминировать. В этот момент Вселенная перешла к ускоренному расширению.

В настоящий момент Вселенная расширяется ускоренно, однако локально (если плотность вещества в данном месте велика) расширение может быть преодолено гравитацией. Поэтому сейчас продолжается формирование скоплений и сверхскоплений галактик (таких, например, как Ланиакеа). Будущее Вселенной зависит от свойств темной энергии.

Современное описание истории Вселенной принято начинать со стадии инфляции (см. ниже). После нее выделяют три основные эпохи. Первая – радиационно-доминированная, в это время наибольший вклад в динамику вносит излучение, а Вселенная расширяется с замедлением. Окончание этой эпохи наступает примерно через 50 000 лет после Большого взрыва, незадолго до эпохи рекомбинации. Во время второй эпохи основной вклад вносит вещество (темное плюс барионное). На этой стадии также происходит замедляющееся расширение. Наконец, примерно 6–7 млрд лет назад началась эпоха доминирования темной энергии, и расширение стало ускоренным.

Если темная энергия – это космологическая постоянная, то ее вклад будет расти по мере разлета вещества. Однако гравитационно связанные структуры (планетные системы, галактики, скопления галактик, сверхскопления) такими и останутся.

Если же темная энергия связана с каким-то неизвестным физическим полем и может иметь нетривиальную эволюцию, то возможно несколько радикально отличающихся вариантов. Например, поле, отвечающее за темную энергию, может со временем распадаться, и тогда вклад темной энергии будет уменьшаться (это похоже на окончание стадии инфляции). В таком случае ускоренное расширение может смениться замедленным.

Будущее Вселенной зависит от эволюции темной энергии.

Другой вариант предусматривает возможность неограниченного роста роли темной энергии (так называемая модель «большого разрыва»), в этом случае постепенно будут разрушаться все связанные структуры. Впрочем, в настоящее время этот вариант считается самым маловероятным.

На данный момент нам неизвестны природа темной энергии и ее эволюция. Ее вклад заметен только на космологических масштабах, поэтому локальные эксперименты пока невозможны. Астрономические наблюдения позволяют установить возможную эволюцию темной энергии в прошлом, а в ближайшие годы начнут работу несколько наблюдательных проектов, которые смогут сделать это еще точнее.

Во многих смыслах современная эпоха доминирования темной энергии похожа на гипотетическую стадию инфляции в ранней Вселенной.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК