9.2. Поглощение света

С точки зрения астронома-наблюдателя, главная роль межзвездной среды связана с поглощением или рассеянием излучения далеких источников. В различных диапазонах электромагнитного спектра работают разные механизмы, связанные с теми или иными компонентами межзвездной среды.

Присутствие пыли приводит к поглощению и покраснению света звезд.

Начнем с оптического диапазона. В 1904 г. Иоганн Гартман обнаружил поглощение света звезды в линиях межзвездного кальция, а в 1930 г. Роберт Трюмплер продемонстрировал, что покраснение света звезд объясняется поглощением межзвездными пылинками излучения в синей части спектра. Действительно, для видимого света (а также для ближнего ИК- и УФ-диапазонов) главным является поглощение света пылинками, поглощенное излучение нагревает пыль, а затем переизлучается на более длинных волнах.

Пыль эффективно поглощает свет с длиной волны меньше размера пылинок, поэтому появляется существенная зависимость интенсивности поглощения от длины волны. Для ультрафиолетового излучения также важно рассеяние излучения очень мелкой пылью.

Кроме непрерывного поглощения излучения пылью существует также поглощение на определенных длинах волн или в относительно узких диапазонах. Это может быть связано и с пылью (тогда полосы поглощения достаточно широкие: например, известны диапазоны поглощения, связанные с ледяными и силикатными пылинками), и с газом. В газе поглощение происходит как в линиях элементов, так и в линиях молекул. В последнем случае могут возникать спектральные полосы, в том числе довольно широкие. Например, присутствие в межзвездной среде полициклических ароматических углеводородов (эти вещества могут встречаться как в виде отдельных молекул, так и в составе пылинок) приводит к поглощению излучения в ИК- и УФ-диапазонах спектра (хотя обычно такие молекулы наблюдаются не в поглощении, а в эмиссии).

В рентгеновском диапазоне ослабление излучения связано в основном с ионизацией атомов.

В жестком ультрафиолетовом и рентгеновском диапазонах ситуация иная. Там поглощение в первую очередь связано с тем, что фотоны могут ионизовать нейтральные атомы, при этом вся энергия фотона передается электрону. Соответственно, основной вклад в поглощение вносит не пыль, а нейтральный водород (хотя в детальных современных моделях учитывается и вклад пыли, и вклад молекул).

Наконец, для жесткого рентгеновского излучения важной оказывается ионизованная межзвездная среда, поскольку основным процессом становится комптоновское рассеяние на свободных электронах: фотон теряет свою энергию, передавая ее электрону при взаимодействии, в итоге рентгеновский поток ослабляется.

В радиодиапазоне взаимодействие со свободными электронами приводит к «расплыванию» сигнала.

А вот в радиодиапазоне поглощение практически несущественно, зато возникает другой эффект – дисперсия сигнала. Из-за наличия свободных электронов в ионизованной среде электромагнитные волны разной длины распространяются с разной скоростью, и сигнал на более коротких волнах приходит чуть раньше. Если источник испустил короткий импульс в широкой спектральной полосе радиоволн, то детектор, работающий в том же диапазоне, зарегистрирует уже «расплывшийся» по времени импульс. В случае сильной дисперсии импульс может настолько изменить временной профиль, что не будет достаточно выделяться на фоне шума и потому не будет зафиксирован приборами. Кроме того, наличие магнитных полей в среде приводит к повороту плоскости поляризации электромагнитной волны, что также наблюдается.

Рассеяние на свободных электронах (томсоновское рассеяние) не играет большой роли в ослаблении излучения в межзвездной среде, поскольку ее плотность недостаточно велика.

Однако в молодой Вселенной (до эпохи рекомбинации) короткая длина пробега фотонов объяснялась именно этим процессом.

Взаимодействие излучения с межзвездной средой зависит от ее плотности (плотности разных компонент – пыли, нейтрального газа, свободных электронов – в зависимости от диапазона длин волн). Поэтому все эффекты усиливаются в направлении на центральную часть Галактики, а также в плоскости Млечного Пути. Это приводит к тому, что многие обзоры внегалактических источников проводят не на всех участках неба: возникает «полоса избегания» вблизи плоскости галактического диска.

Все виды воздействия межзвездной среды на излучение заметнее в плоскости Галактики.

Различные компоненты межзвездной среды являются также и источниками излучения. С одной стороны, это приводит к появлению нежелательного фона в ряде исследований (например, при изучении реликтового излучения), а с другой – к существованию красивых туманностей разного типа.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК