5.1. Первичный состав. Реакции в ранней Вселенной. Первые звезды

Наряду с наблюдением реликтового излучения, определением параметров крупномасштабной структуры и данными по динамике расширения видимой части Вселенной модель первичного нуклеосинтеза является одной из основ современной космологии.

Элементы тяжелее гелия в основном формируются в звездах или в катастрофических процессах, связанных со звездными остатками.

По мере расширения Вселенной ее температура и плотность уменьшаются. Спустя несколько секунд после начала расширения, когда температура снижается до 108–107 K, создаются условия для протекания термоядерных реакций.

Первичный нуклеосинтез протекает в период от нескольких секунд до нескольких минут после начала расширения Вселенной.

Первыми образуются ядра дейтерия. Однако они эффективно «сгорают» в последующих реакциях, и лишь ничтожное количество этого изотопа попадет в первые звезды и межзвездный газ. Поэтому изучать его первичное обилие очень непросто. В последнее время это удается сделать путем изучения спектра очень далеких квазаров.

Затем наступает очередь более тяжелых ядер. В частности, формируется большое количество ядер гелия-4 (4He). Однако значительная часть протонов не попадает в состав сложных ядер по причине нехватки нейтронов, которых на этой стадии примерно в семь раз меньше. Это связано с тем, что нейтрон немного тяжелее протона, поэтому в ранней Вселенной формируется разное количество этих частиц. В ядре гелия-4 два протона и два нейтрона, и, если Вселенная состоит только из водорода и гелия, а отношение числа нейтронов и протонов составляет 1/7, можно легко подсчитать, что на одно ядро гелия придется 12 протонов (ядер водорода 1H). Масса ядра гелия-4 примерно в 4 раза больше массы протона, поэтому доля гелия (по массе) во Вселенной составляет 4/16 (т. е. 1/4), а доля водорода – 3/4.

По окончании эпохи первичного нуклеосинтеза барионное вещество во Вселенной в основном состоит из водорода (75 %) и гелия (25 %).

Доля элементов тяжелее гелия во Вселенной в эту эпоху крайне мала, поскольку присоединение нейтронов и протонов к гелию-4, а также объединение двух ядер гелия-4 (альфа-частиц) не приводит к образованию устойчивых ядер (таковых с массами 5 и 8 не существует). Из более тяжелых элементов образуются только небольшие количества 7Li и 7Be (бериллий достаточно быстро превращается в литий, захватывая электрон). Однако Вселенная достаточно быстро расширяется (ее плотность падает) и остывает. Кроме того, постепенно становится важным распад свободных нейтронов. Поэтому спустя примерно тысячу секунд термоядерные реакции полностью прекращаются, и химический состав остается постоянным до образования первых звезд.

Первые модели первичного нуклеосинтеза появились в 1940-е гг. в работах Ральфа Альфера (Ralph Alpher), Георгия Гамова и Роберта Хермана (Robert Herman). Побочным эффектом этих работ стало предсказание существования реликтового излучения и достаточно точное теоретическое определение его температуры. В конце 1960-х – начале 1970-х гг. эта тема активно развивалась, и в настоящий момент теория первичного нуклеосинтеза является развитым разделом астрофизики ранней Вселенной. Точность расчетов первичного нуклеосинтеза постоянно растет, потому что данные экспериментов позволяют уточнять сечения ряда термоядерных реакций, также уточняется время жизни свободного нейтрона. Кроме того, предсказания модели первичного нуклеосинтеза постоянно проверяются на основе результатов наблюдений.

Основы модели нуклеосинтеза были заложены в 1940-е гг. Альфером, Гамовым и Херманом.

Данные наблюдений реликтового излучения (в первую очередь полученные с помощью спутников WMAP и Planck) позволяют достаточно точно определить количество барионного вещества во Вселенной. Это дает возможность с высокой точностью рассчитать ожидаемое соотношение различных изотопов по окончании эпохи первичного нуклеосинтеза. Если бы вклад барионов в полную плотность Вселенной был выше, доля гелия-4 возросла бы, а доля дейтерия и гелия-3 – упала, поскольку они тогда активнее перерабатывались бы в гелий-4. Содержание лития ведет себя более сложным образом. В итоге массовая доля гелия-4 во Вселенной на момент окончания эпохи первичного нуклеосинтеза составляет чуть менее 25 %, доля водорода (1H) – 75 %, а на остальные элементы и их изотопы приходится существенно меньше 1 %.

Наблюдения содержания различных элементов, таких как D, 3He, 4He, 7Li, в том числе и в очень далеких объектах, которые мы видим такими, какими они были миллиарды лет назад, а также в очень старых звездах – самых первых в нашей Галактике, показывают, что модель первичного нуклеосинтеза находится в хорошем согласии с результатами наблюдений. Однако получение данных о первичном химическом составе является очень непростой задачей, поскольку реакции в звездах и другие процессы постоянно меняют химический состав Вселенной, а наблюдать первичное вещество непосредственно мы пока не можем. Существуют вопросы с объяснением наблюдаемого содержания лития, но такие проблемы не ставят под сомнение модель в целом.

Данные по реликтовому излучению позволяют определить плотность барионов и тем самым уточнить предсказания модели первичного нуклеосинтеза.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК