4.3. Диаграмма Герцшпрунга – Рассела. Цефеиды
Огромную роль в визуализации параметров звезд и свойств их эволюции играет диаграмма Герцшпрунга – Рассела. В типичном современном виде она связывает светимость звезд с их температурой. Однако обе величины трудно измерить напрямую, поэтому часто используют варианты диаграммы с другими параметрами, связанными со светимостью и температурой.

Для определения светимости необходимо знать расстояние до звезды. Однако, если мы используем звезды одного скопления, все они лежат примерно на одном расстоянии от нас. Значит, можно просто использовать их наблюдаемый блеск (звездную величину) как меру относительной светимости. Точное определение температуры также является непростой задачей, однако можно использовать различные спектральные характеристики (например, так называемые показатели цвета, которые можно в первом приближении представить себе как цвет звезды). Именно так и поступали первые исследователи.
Диаграмма Герцшпрунга – Рассела связывает светимость и температуру звезд.
Диаграмма получила свое имя в честь Эйнара Герцшпрунга (Ejnar Hertzsprung) и Генри Рассела (Henry Russell). Герцшпрунг для своих первых диаграмм использовал звезды скопления Плеяды, а Рассел использовал звезды с расстояниями, определенными тем или иным образом. Непосредственные измерения температур не были доступны, поэтому Рассел использовал так называемые спектральные классы звезд, а Герцшпрунг – характерную длину волны, соответствующую максимуму спектра (по сути, цвет звезды).
Основная часть звезд находится на Главной последовательности диаграммы Герцшпрунга – Рассела.
Однако первый опубликованный график такого типа не принадлежал ни Герцшпрунгу (который опубликовал свои результаты в 1911 г.), ни Расселу (в 1913 г.) – его построил в 1910 г. Ганс Розенберг (Hans Rosenberg) также для звезд Плеяд, используя спектральные классы, определяемые по соотношению интенсивностей линий в спектре.
Положение звезды на диаграмме светимость-температура дает нам представление и о размерах звезд. Излучение звезды, например Солнца, приблизительно можно описать законом излучения абсолютно черного тела (формулой Планка). Светимость при этом подчиняется закону Стефана – Больцмана: она пропорциональна площади поверхности (т.e. квадрату радиуса звезды) и четвертой степени ее температуры. Соответственно, высокой светимостью могут обладать или звезды с высокой температурой, или звезды с большим радиусом (оба варианта реализуются в природе).
Основной особенностью распределения звезд на диаграмме Герцшпрунга – Рассела является так называемая Главная последовательность. Оказалось, что подавляющее большинство звезд попадает на полосу, тянущуюся от левого верхнего (мощные звезды с высокой температурой поверхности) к правому нижнему углу (слабые звезды с низкой температурой – красные карлики). Сейчас мы знаем, что, попав в определенную часть Главной последовательности (куда именно, в первую очередь зависит от массы), звезда проводит там около 90 % своей жизни. Это самая длинная стадия, на которой происходит превращение водорода в гелий.
На стадии Главной последовательности происходит превращение водорода в гелий.
По окончании термоядерного горения водорода в ядре звезды она покидает Главную последовательность. Дальнейшая жизнь звезды – это ее путешествие по диаграмме Герцшпрунга – Рассела. В зависимости от массы этот путь (эволюционный трек) может быть более или менее замысловатым.
Звезды типа Солнца смещаются вправо (более низкие температуры поверхности) и значительно вверх (рост светимости), превращаясь в красных гигантов. В конце своей жизни они сбрасывают внешние оболочки (которые могут быть видны как планетарные туманности) и превращаются в белые карлики.
Массивные звезды значительно смещаются вправо и немного вверх, возможно, выписывая петли на диаграмме. Их называют яркими гигантами и сверхгигантами. В конце своей жизни они чаще всего вспыхивают как сверхновые и оставляют после себя нейтронные звезды, а иногда и черные дыры.
Положение звезды на Главной последовательности, а также ее эволюционный путь зависят не только от массы, но и от начального химического состава. Маломассивные звезды с сильно пониженным содержанием тяжелых элементов немного сдвинуты от стандартной Главной последовательности влево (в сторону более высоких температур) и немного вверх, образуя параллельную последовательность субкарликов. В общих чертах эволюция малометалличных звезд по окончании горения водорода в ядре подобна эволюции звезд с солнечным составом, но конкретный вид треков может отличаться, особенно для массивных объектов.
Положение звезды на Главной последовательности и ее эволюция определяются в первую очередь массой, а также химическим составом.
Звезды со сходным поведением на диаграмме Герцшпрунга – Рассела группируются. В частности, некоторые пульсирующие звезды занимают строго определенные области. Самые известные из них – цефеиды, они попадают в так называемую полосу нестабильности.
Цефеиды получили свое название по звезде-прототипу. Переменность дельты Цефея описал в 1784 г. Джон Гудрайк (John Goodricke). К цефеидам относится и самая яркая звезда в кратной системе Полярной звезды. Аристарх Белопольский, исследуя спектры дельты Цефея, в 1894 г. обнаружил, что лучевая скорость этой звезды периодически изменяется. Однако тогда не удалось показать, что это связано именно с пульсациями (сам Белопольский полагал, что такая переменность объясняется двойственностью звезды). Окончательно существование пульсаций стало ясным пару десятилетий спустя, в основном благодаря работам Харлоу Шепли (Harlow Shapley). Тем не менее причина такого поведения оставалась неясной еще более полувека.
Цефеиды – это пульсирующие звезды-гиганты.
Идея механизма работы цефеид была высказана Артуром Эддингтоном (Arthur Stanley Eddington) еще в 1920-е гг.: если во время пульсаций будет меняться (увеличиваться во время расширения и уменьшаться во время сжатия) прозрачность значительного слоя вещества внутри звезды, то периодическое «запирание» излучения сможет поддерживать эти колебания. А в 1950-е гг. Сергей Жевакин внес основной вклад в решение загадки пульсаций цефеид (и некоторых других пульсирующих звезд), показав, что частичная ионизация водорода и гелия может приводить к необходимому изменению прозрачности слоев оболочки звезды на нужной глубине. При сжатии часть энергии идет на ионизацию, а не на повышение температуры в слое, при этом возрастает плотность. В результате вещество становится менее прозрачным, и излучение, как поршень, начинает толкать вещество наружу. При этом прозрачность растет, излучение покидает слой, и оболочка вновь начинает сжиматься. Этот цикл повторяется снова и снова.
Период пульсаций цефеид связан с их светимостью, что позволяет использовать эти объекты для определения расстояний.
Такой цикл работает только в случае залегания запирающего слоя на нужной глубине. Соблюдение этого условия в первую очередь определяется температурой звезды. Поэтому на диаграмме Герцшпрунга – Рассела возникает достаточно узкая, почти вертикальная полоса нестабильности, где и расположены практически все типы регулярно пульсирующих с достаточно большой амплитудой звезд. Сейчас строятся более детальные модели пульсаций, которые могут объяснять очень сложное поведение некоторых объектов, демонстрирующих вариации периодов, различные типы пульсаций, их сочетания и эволюцию.
Важной особенностью цефеид является то, что период их пульсаций (он составляет от 1 до 100 дней) связан со светимостью. Это установила в 1912 г. Генриетта Левитт (Henrietta Leavitt), изучая цефеиды Малого Магелланова Облака. Поскольку цефеиды – гиганты, т.e. обладают высокой светимостью (обычно она в несколько тысяч раз превосходит солнечную), уже сто лет назад их можно было наблюдать в соседних галактиках. Именно это позволило в 1920-е гг. Эдвину Хабблу (Edwin Hubble) и другим исследователям определить природу спиральных туманностей и продемонстрировать, что это гигантские звездные системы, подобные нашей и находящиеся на расстояниях в миллионы световых лет. В настоящее время цефеиды используют как одну из основ определения расстояний до других галактик.
В последние годы благодаря работе космического телескопа Hipparcos, а позднее космического телескопа Hubble, удалось с высокой точностью измерить параллаксы для нескольких десятков цефеид. Это позволило уточнить внегалактическую шкалу расстояний благодаря лучшей калибровке определения расстояний по цефеидам.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОК