Глава 4. Новая физика
По мнению восточных мистиков, прямое прозрение наступает мгновенно и потрясает основы взглядов человека на мир. Дайсэцу Судзуки назвал это ощущение мгновенным актом: «оно мгновенно в связи с тем, что оно не знает никаких градаций, никакого продолжительного откровения», — и привел в подтверждение высказывание одного из дзенских наставников, сравнившего подобное явление с тем, как у ведра выпадает дно[40]. В начале XX в. физики испытали нечто подобное при знакомстве с реальностью атомного мира, и их высказывания чем-то напоминают слова дзенского учителя. Так, Гейзенберг писал следующее.
Эту бурную реакцию на новейшее развитие современной физики можно понять, только признав, что это развитие привело в движение сами основы физики и, возможно, естествознания вообще и что это движение вызвало ощущение, будто вся почва, на которую опирается естествознание, уходит из-под наших ног[41].
Эйнштейн тоже был потрясен, впервые столкнувшись с миром атома. Вот что он писал в своей автобиографии.
Все мои попытки применить теоретические основы физики к этому (новому) знанию оказались безуспешными. Это напоминало ситуацию, когда почва уходит из-под ног и тебе не на что опереться[42].
Открытия современной физики обусловили необходимость глубокого пересмотра таких понятий, как пространство, время, материя, объект, причина и следствие и т. д. А поскольку это основы познания мира, неудивительно, что ученые испытали шок. И вознило новое мировоззрение, формирование которого продолжается.
И восточные мистики, и западные физики столкнулись с новым революционным опытом, заставляющим взглянуть на мир по-новому. Европейский физик Нильс Бор и индийский мистик Шри Ауробиндо[43] подчеркивают глубину и радикальность этого опыта.
Грандиозное расширение наших знаний в последние годы выявило недостаточность наших простых механистических концепций и, как следствие, пошатнуло основания общепринятого истолкования[44].
Нильс Бор
На самом деле, все вещи начинают изменять свою сущность и внешний вид; мировосприятие каждого человека в корне изменяется… Появляется новый широкий и глубокий путь восприятия, видения, познания, сопоставления вещей[45].
Шри Ауробиндо
В этой главе приводится описание новой концепции мира в противовес классической физике. (Если материал покажется слишком сжатым и сложным, не беспокойтесь: все понятия, приведенные в этой главе, будут подробнее рассмотрены дальше.) Я расскажу, как в начале XX в. классические механистические взгляды на мир были отвергнуты, а появившиеся в тот период две основные теории современной физики — квантовая и теория относительности — заставили ученых избрать гораздо более тонкий, комплексный и «органический» взгляд на природу.
Классическая физика
Мировоззрение, опровергнутое открытиями современной физики, основывалось на ньютоновской механистической модели Вселенной. Она служила каркасом классической физики и основой всех наук и натурфилософии на протяжении почти трех столетий.
По Ньютону, все физические явления происходят в трехмерном пространстве, описываемом евклидовой геометрией. Это абсолютное пространство, всегда находящееся в состоянии покоя и неизменное. Как утверждал сам Ньютон: «Само абсолютное пространство, без учета внешних факторов, всегда остается неизменным и неподвижным»[46]. Все перемены в физическом мире описывались в терминах отдельного измерения, именуемого временем: абсолютного, не имеющего связи с материальным миром и равномерно текущего через прошлое, настоящее и будущее. «Абсолютное, истинное математическое время, по своей сущности, течет с постоянной скоростью, не подвергаясь внешним воздействиям», — утверждал Ньютон[47].
Ньютон считал, что в абсолютном пространстве и абсолютном времени движутся материальные частицы. В своих математических уравнениях он рассматривал их как «точечные массы» и считал маленькими, твердыми и неделимыми объектами, из которых состоит материя. Эта модель очень похожа на модель греческих атомистов. Обе различают полное и пустое, материю и пространство, обе исходят из того, что форма и масса частиц неизменны. Материя вечна и изначально пассивна. Важное отличие ньютоновской модели от демокритовой в том, что первая точно описывает силу взаимодействия между материальными частицами. Последняя очень проста и зависит только от масс и расстояний между частицами. Это сила притяжения. По мнению Ньютона, она тесно связана с телами, на которые действует, причем постоянно и на любом расстоянии. Подобные представления сегодня кажутся странными, но в те времена никто не пытался исследовать их глубже. Считалось, что частицы и силы созданы Богом и не подлежат анализу. В своем трактате «Оптика, или Трактат об отражениях, преломлениях, изгибаниях и цветах света» Ньютон выдвигает следующее представление о том, как Бог создал материальный мир.
Мне кажется вероятным, что Бог вначале сотворил материю в виде твердых, обладающих массой, цельных, непроницаемых и подвижных частиц с такими размерами, пропорциями, формами и другими качествами, которые наилучшим образом отвечают той цели сотворения. И эти частицы, будучи цельными, несравненно плотнее, чем любое пористое тело, из них составленное. Они настолько плотны, что никогда не изнашиваются и не разбиваются; ни одна сила не может разделить то, что Бог сотворил единым при своем первотворении[48].
Согласно ньютоновской механике, все физические явления сводятся к движению материальных точек в пространстве, вызванному их взаимным притяжением (силой тяжести, гравитацией). Чтобы дать строгое математическое описание этой силы, Ньютону пришлось использовать абсолютно новые понятия и математические операции дифференциального исчисления. Это был гигантский интеллектуальный прорыв. Эйнштейн высоко оценивал значение трудов Ньютона, называя их «величайшим достижением мысли, которым мир обязан одному человеку».
Основа классической механики — ньютоновские уравнения движения. Считалось, что они отражают незыблемые законы, управляющие перемещениями материальных точек, а значит, и всеми природными явлениями. По мнению Ньютона, Бог создал материальные частицы, силы между ними и фундаментальные законы движения. Вся Вселенная была запущена в движение и движется до сих пор, как хорошо отлаженный механизм, подчиняющийся неизменным законам.
Механистический взгляд на природу был тесно связан со строгим детерминизмом. Огромный космический механизм подчинялся определенным законам. Всё происходящее имело причину и следствие. В принципе, досконально зная состояние системы в текущий момент, можно было с уверенностью предсказывать ее будущее. Эта уверенность выразилась в высказывании французского математика Пьера Лапласа.
Разум, располагающий точными и подробными сведениями о местонахождении всех вещей, из которых состоит мир, при условии, что он способен подвергнуть анализу столь огромное количество данных, смог бы объединить в одной формуле движение самых больших тел Вселенной и мельчайших атомов. Для него не оставалось бы неясностей, и будущее, как и прошлое, показалось бы ему настоящим[49].
Философской основой строгого детерминизма было фундаментальное разграничение между миром и человеческим «Я», введенное Декартом. Как следствие, возникла уверенность в возможности объективного описания мира, лишенного даже упоминаний о личности наблюдателя-человека. Наука видела в таком объективном описании мира свой идеал.
Ньютоновская механика переживала колоссальный успех в XVIII–XIX вв. Сам Ньютон при помощи своей теории объяснил движение планет и основные свойства Солнечной системы. Но его модель была сильно упрощенной и не учитывала, например, гравитационное воздействие планет друг на друга. Из-за этого Ньютон обнаружил в ней несообразности, которые сам не мог объяснить. Он решил проблему, предположив, что Бог всегда присутствует во Вселенной, чтобы исправлять нестыковки.
Великий математик Лаплас поставил перед собой амбициозную задачу уточнить и усовершенствовать вычисления Ньютона «и предложить окончательное решение проблемы механики Солнечной системы и настолько приблизить теорию к наблюдениям, чтобы в астрономических таблицах не осталось места эмпирическим вычислениям»[50]. Результатом стала большая работа в пяти томах, «Небесная механика». Лаплас в мельчайших деталях описал движение планет, их спутников и комет, причины приливов и других гравитационных явлений. Он показал, что из ньютоновских законов движения следует стабильность Солнечной системы, а Вселенная — саморегулирующийся механизм. Когда Лаплас продемонстрировал Наполеону первое издание своей книги, тот, по рассказам очевидцев, заметил: «Мсье Лаплас, мне сказали, что этот грандиозный труд об устройстве Вселенной не содержит ни одного упоминания о Творце». На что Лаплас резко ответил: «Я не нуждался в этой гипотезе».
Вдохновленные успехом ньютоновской механики в астрономии, физики использовали ее для описания непрерывного течения жидкостей и колебаний упругих тел и вновь добились хороших результатов. Даже кинетическая теория теплоты получила механистическое обоснование: теплота — энергия, порожденная сложным хаотическим движением молекул вещества. Так, при повышении температуры воды подвижность молекул растет, пока они не преодолевают сил взаимного притяжения и не разделяются. При этом вода превращается в пар. А при охлаждении движение молекул замедляется, между ними возникает более тесная связь, они соединяются в новую, более жесткую и неподвижную структуру, и образуется лед. Так же чисто механически можно объяснить множество других тепловых явлений (рис. 2).
Рис. 2. Три состояния воды
Триумф механистической модели Ньютона в начале XIX в. убедил физиков в том, что ее законы управляют движением всей Вселенной и лежат в основе законов природы, а явления природы не могут иметь другого объяснения. Но по прошествии менее 100 лет стало очевидно, что ньютоновская модель не может объяснить новые физические открытия, а ее законы не всегда верны.
Это понимание пришло к ученым не внезапно, а было подготовлено открытиями, состоявшимися еще в XIX в. и создавшими почву для недавней научной революции. Всё началось с открытия и исследования явлений электричества и магнетизма, которые не допускали механического толкования, свидетельствуя о существовании новых, неизвестных до того сил. Важный шаг сделали Майкл Фарадей и Клерк Максвелл — первый был одним из величайших экспериментаторов в истории науки, а второй — блестящим теоретиком. Когда Фарадей поднес к медной катушке магнит и вызвал в ней электрический ток, преобразовав тем самым механическую работу в электрическую энергию, он создал великий поворотный момент в истории науки. Этот фундаментальный эксперимент, с одной стороны, дал рождение электротехнике, а с другой — стал основой для теоретических размышлений Фарадея и Максвелла, плодом которых стала теория электромагнетизма. Фарадей и Максвелл не только исследовали действие сил электричества и магнетизма. Прежде всего они занялись самой их природой. Они заменяли понятие «силы» понятием «силового поля» и первыми вышли за пределы физики Ньютона.
Фарадей и Максвелл отрицали, что положительный и отрицательный заряды притягиваются друг к другу точно так же, как два тела в ньютоновской механике. Они утверждали, что каждый заряд создает вокруг себя особое «возбуждение», или «состояние», и противоположный заряд, находящийся поблизости, испытывает их воздействие. Состояние пространства, способное порождать силу, было названо полем. Поле создается каждым зарядом независимо от присутствия иного заряда, способного испытать его воздействие.
Это открытие в корне изменило наше представление о физическом мире. В ньютоновской модели силы непосредственно связаны с телами, на которые они воздействуют. Теперь же место понятия «силы» заняло более сложное понятие «поля», которое существует само по себе и не имеет отношения к материальным телам. Кульминацией этой теории, получившей название электродинамики, было понимание того, что сам свет — переменное электромагнитное поле высокой частоты, движущееся в пространстве в виде волн. Мы теперь знаем, что и радиоволны, и волны видимого света, и рентгеновские лучи — электромагнитные волны, колеблющиеся магнитное и электрическое поля, различающиеся только частотой колебаний, а видимый свет — незначительная часть электромагнитного спектра (рис. 3).
Рис. 3. Спектр электромагнитного излучения
Несмотря на эти эпохальные открытия, в основе физики всё еще лежала механика Ньютона. Сам Максвелл пробовал объяснить результаты своих исследований механистически, считая поле механически напряженным состоянием эфира — очень легкой среды, заполняющей всё пространство; а электромагнитные волны — ее упругими колебаниями. Это было естественно, поскольку в волнах обычно видели колебания какой-либо среды: на поверхности воды — водной, в звуковых волнах — воздушной и т. д. Максвелл одновременно использовал несколько механистических объяснений своих открытий, явно не принимая ни одного всерьез. Видимо, он интуитивно чувствовал, хотя и не говорил прямо, что главное в его теории — понятие поля, а не механистические модели. И только Эйнштейн четко признал этот факт через 50 лет, заявив, что никакого эфира не существует, а электромагнитные поля — отдельные физические явления, которые могут перемещаться в пустом пространстве и не могут быть объяснены механистически.
Итак, в начале XX в. физика располагала двумя признанными теориями, каждая из которых относилась к своим природным явлениям: механикой Ньютона и электродинамикой Максвелла. Но ньютоновская модель уже не была единственной основой физики.
Физика конца XX столетия
Первые три десятилетия XX в. радикально изменили ситуацию в физике. Одновременное появление теории относительности и теории атома потрясли представление ньютоновской механики об абсолютном характере времени и пространства, твердых элементарных частицах, строгой причинной обусловленности всех физических явлений и абсолютной объективности познания природы. Эти старые идеи не могли быть распространены на новые территории, которые осваивала физика.
У истоков современной физики находится великое свершение одного человека, Альберта Эйнштейна. В двух своих статьях, опубликованных в 1905 г., он изложил две революционные концепции. Первая стала основой специальной теории относительности; вторая заставила по-новому взглянуть на электромагнитное излучение и легла в основу квантовой теории, имевшей дело с атомами. Последняя в окончательном виде сформировалась спустя 20 лет благодаря совместным усилиям группы физиков. А теорию относительности практически полностью разработал сам Эйнштейн. Его научные труды увековечили грандиозные достижения человеческого разума, став своего рода пирамидами современной цивилизации.
Эйнштейн был твердо уверен, что природе изначально присуща гармония, и в своей работе на протяжении всей жизни руководствовался желанием найти универсальную основу физики. Первым шагом было объединение двух самостоятельных теорий классической физики — электродинамики и механики. Эйнштейн сделал это в рамках специальной теории относительности. Она дополнила систему классической физики, но одновременно потребовала решительного пересмотра традиционных представлений о пространстве и времени и разрушила одно из оснований ньютоновского мировоззрения.
Согласно теории относительности, пространство не трехмерно, а время не существует отдельно от него. Одно тесно связано с другим, и вместе они образуют четырехмерный пространственно-временной континуум. В теории относительности мы никогда не можем говорить о пространстве отдельно от времени и наоборот. Более того, в отличие от ньютоновской модели, здесь нет единого течения времени. Разные наблюдатели, двигаясь с различными скоростями относительно наблюдаемых ими явлений, указывают на разную их последовательность. В этом случае два события, одновременные для одного наблюдателя, для другого будут протекать в определенной последовательности. И все измерения, включающие пространство и время, становятся относительными. И время, и пространство оказываются элементами языка, который использует человек для описания наблюдаемых явлений.
Понятия времени и пространства настолько важны для познания природы, что их корректировка влечет изменение общего подхода к описанию ее явлений. Самое важное следствие этого — осознание того, что масса представляет собой одну из форм энергии. Даже неподвижный объект наделен энергией, заключенной в его массе, и их соотношение выражается знаменитым уравнением Е = mc2, где с — скорость света.
Константа с фундаментальна для теории относительности. Всегда, когда описываются физические явления, при которых действуют скорости, близкие к ней, необходимо учитывать теорию относительности. Особенно это касается электромагнитных колебаний, одним из которых является свет и которые привели Эйнштейна к созданию его теории.
В 1915 г. Эйнштейн выдвинул общую теорию относительности, которая, в отличие от специальной, включала гравитацию, т. е. взаимное притяжение всех тел, обладающих массой. Специальная теория была подтверждена множеством экспериментов, а общая еще не нашла окончательного подтверждения[51]. И все же это наиболее широко признанная, последовательная и изящная теорией гравитации, которая часто применяется в астрофизике и космологии, а также для описания Вселенной в целом.
Согласно теории Эйнштейна, гравитация способна «искривлять» время и пространство. В искривленном пространстве законы евклидовой геометрии не действуют, так же как двумерная евклидова геометрия не может быть применена на поверхности сферы. На плоскости, например, мы можем нарисовать квадрат так: отложить метр на прямой линии, отложить прямой угол и снова отмерить метр, затем отложить еще один прямой угол и снова отмерить метр, в третий раз отложить прямой угол и, вернувшись в исходную точку, получить квадрат. А на поверхности шара эти правила не действуют (рис. 4). Теория Эйнштейна утверждает, что трехмерное пространство искривляется под воздействием гравитационного поля тел с большой массой.
Рис. 4. Изображение квадрата на плоскости и на шаре
Пространство вокруг таких тел — планет, звезд и т. д. — искривлено, а степень искривления зависит от массы тела. Поскольку в теории относительности время не может быть отделено от пространства, присутствие вещества воздействует и на время. Поэтому в разных частях Вселенной время течет с разной скоростью. Общая теория относительности Эйнштейна полностью отвергает понятия абсолютного пространства и времени. Относительны не только все измерения; сама структура пространства-времени зависит от распределения вещества во Вселенной, а понятие «пустого пространства» теряет смысл.
Классическая же физика рассматривала движение твердых тел в пустом пространстве. Такой подход и сегодня возможен, но лишь по отношению к так называемой зоне средних измерений, т. е. в области нашего повседневного опыта, где классическая физика по-прежнему полезна. Оба представления — о пустом пространстве и твердых материальных телах — настолько укоренились в нашем мышлении, что нам трудно представить себе физическую реальность, где они неприменимы. И всё же современная физика, выходя за пределы зоны средних измерений, заставляет нас мыслить иначе. Выражение «пустое пространство» утратило смысл в астрофизике и космологии — науках о Вселенной, а понятие твердого тела было уничтожено атомной физикой — наукой о бесконечно малом.
В начале XX в. было обнаружено несколько явлений, связанных со структурой атома и необъяснимых с позиций классической физики. Первое свидетельство в пользу того, что атомы обладают структурой, появилось с открытием рентгеновских лучей — нового вида излучения, быстро нашедшего применение в медицине. Но это не единственный вид излучения, испускаемого атомами. Вскоре после их открытия стали известны и другие, испускаемые атомами радиоактивных веществ. Явление радиоактивности дало доказательства составной природы атомов, продемонстрировав, что те не только испускают различные излучения, но и превращаются при этом в атомы других элементов.
Эти явления не только активно изучались, но и использовались для глубокого проникновения в тайны природы, что было невозможно ранее. Так, Макс фон Лауэ при помощи рентгеновских лучей исследовал атомную структуру кристалла, а Эрнест Резерфорд[52] обнаружил, что альфа-частицы, исходящие от радиоактивных веществ, можно использовать в качестве высокоскоростных снарядов субатомного размера для исследования внутренней структуры атома. Атомы подвергались обстрелу альфа-частицами, а по траекториям их «отскока» после столкновения можно было делать выводы о том, как устроен атом.
В результате бомбардировки атомов потоками альфа-частиц Резерфорд получил сенсационные и неожиданные результаты. Вместо описанных древними твердых и цельных частиц ученые увидели невероятно мелкие частицы — электроны, движущиеся вокруг ядра на достаточно большом расстоянии. Они были привязаны к ядрам электрической силой. Непросто представить себе микроскопические атомы — настолько далеки они от наших обычных макроскопических представлений. Диаметр атома — примерно одна миллионная сантиметра. Представьте апельсин, увеличенный до размеров земного шара. Тогда атомы увеличились бы до размеров вишен. Мириады соприкасающихся вишен, упакованные в шар размером с Землю, — такова увеличенная картина атомов, из которых состоит апельсин.
Таким образом, атом во много раз меньше любого известного нам предмета, но гораздо больше ядра, находящегося в его центре. Ядро атома, увеличенного до размеров вишни, футбольного мяча или даже комнаты, было бы невидимо вооруженным глазом. Чтобы лицезреть его, нам нужно было бы увеличить атом до размеров купола собора Святого Петра в Риме. Тогда ядро было бы величиной с крупицу соли, а электроны — с пылинки.
Вскоре после появления этой «планетарной» модели атома было обнаружено, что химические свойства элемента зависят от числа электронов. Сегодня мы знаем, что можно составить периодическую таблицу химических элементов, последовательно добавляя протоны к ядру самого легкого атома — водорода, состоящего из одного протона и одного электрона, а также соответствующее число электронов к «оболочке». Взаимодействие между атомами порождает различные химические процессы, и вся химия сегодня может быть представлена на основе законов атомной физики.
Их было нелегко открыть. Они были сформулированы лишь в 1920-е физиками разных стран: датчанином Нильсом Бором, французом Луи де Бройлем, австрийцами Эрвином Шредингером и Вольфгангом Паули и англичанином Полем Дираком. Объединив свои усилия наперекор всем государственным границам, они положили начало одной из самых волнующих эпох в современной науке: эпохе знакомства со странной и неожиданной реальностью мира атома. Каждый раз, когда ученые задавали природе вопрос в рамках очередного эксперимента, она отвечала им загадками. И чем больше они стремились прояснить ситуацию, тем более загадочными становились головоломки природы. Далеко не сразу физики поняли, что эти загадки и противоречия объясняются стремлением описывать явления атомной реальности в понятиях классической физики. Но, убедившись в этом, они стали иначе задавать природе вопросы, чтобы избежать противоречивых ответов. По словам Гейзенберга, «они как-то соприкоснулись с духом квантовой теории» и смогли четко и последовательно сформулировать ее в математическом виде.
Но даже после этого понятия, которыми оперировала квантовая теория, оставались неясными. Они потрясали воображение физиков. Раньше в своих экспериментах Резерфорд обнаружил, что атомы не являются твердыми и неделимыми, а состоят из пустого пространства, в котором движутся очень маленькие частицы. Теперь квантовая теория утверждала, что эти частицы тоже не имеют ничего общего с твердыми объектами классической физики. Субатомные частицы материи обладают двойной природой. В зависимости от того, как мы наблюдаем их, они могут представать перед нами и как волны, и как частицы (рис. 5). Такую же природу демонстрирует и свет, способный принимать вид как электромагнитных волн, так и частиц.
Рис. 5. Частица и волна
Это свойство материи и света очень необычно. Кажется невероятным, что что-то может одновременно быть частицей — единицей чрезвычайно малого объема, замкнутой в ограниченном пространстве, — и волной, «размазанной» по большому участку.
Это противоречие породило большинство напоминающих коаны парадоксов, что легли в основу квантовой теории. Всё началось с открытия Макса Планка, показавшего, что энергия теплового излучения испускается не непрерывно, а «пакетами». Эйнштейн назвал их «квантами» и увидел в них основополагающий элемент природы. Он утверждал, что электромагнитное излучение может существовать не только в форме волн, но и в форме квантов. С тех пор кванты света рассматриваются как реальные частицы и называются фотонами. Они лишены массы и всегда движутся со скоростью света.
Мнимое противоречие между свойствами волн и частиц разрешилось неожиданно, поставив под вопрос основу механистического мировоззрения — понятие реальности материи. Внутри атома материя не существует в определенных местах, скорее, она «склонна существовать». Атомные явления не происходят в определенных местах и определенным образом, скорее, «могут происходить». Язык формальной математики в квантовой теории называет эти возможности вероятностями и связывает их с математическими величинами, предстающими в форме волн. Вот почему частицы могут одновременно быть волнами. Это не «настоящие» трехмерные волны, как, например, звуковые или волны на поверхности воды. Это «вероятностные волны» — абстрактные математические величины со всеми свойствами волн, связанные с вероятностью существования частиц в определенных точках пространства в определенные моменты времени. Все законы атомной физики выражаются в терминах этих вероятностей. Мы никогда не можем уверенно говорить о том, что происходит с атомом; мы можем только сказать, насколько вероятно, что это произойдет. Квантовая теория разрушила классические представления о твердых телах и строгом детерминизме природных законов. На субатомном уровне место твердых материальных объектов классической физики заняли волнообразные вероятностные модели, которые к тому же отражают вероятность существования не вещей, а скорее, их взаимосвязей. Тщательный анализ наблюдений в атомной физике показал, что субатомные частицы не имеют смысла в виде самостоятельных объектов, а могут пониматься лишь как промежуточное звено между подготовкой эксперимента и последующими измерениями. Таким образом, квантовая теория свидетельствует о фундаментальной цельности мироздания, показывая, что мы не можем разложить мир на «строительные блоки». Проникая в глубины материи, мы видим не самостоятельные компоненты, а сложную систему взаимоотношений между частями единого целого. Важную роль здесь играет наблюдатель. Это конечное звено в цепи, а свойства любого объекта мира атомов могут быть поняты только в рамках его взаимодействия с наблюдателем. Классический идеал объективного описания природы уже не действует. Имея дело с атомной реальностью, нельзя придерживаться картезианского разделения Вселенной и личности, наблюдателя и наблюдаемого. В атомной физике нельзя говорить о природе, не говоря одновременно о нас.
Новая теория строения атома сразу смогла решить несколько загадок, перед которыми оказалась бессильна планетарная теория Резерфорда. Прежде всего эксперименты Резерфорда показали, что атомы, образующие твердую материю, состоят почти целиком из пустого пространства, если рассматривать их с точки зрения распределения массы. Но если всё вокруг человека, как и сам он, состоит в основном из пустоты, почему мы не можем проходить сквозь запертые двери? Что придает плотность веществу?
Вторая загадка — невероятная механическая стабильность атомов. Например, в воздухе они сталкиваются друг с другом миллионы раз в секунду и каждый раз возвращают себе прежнюю форму. Никакая планетарная система, подчиняющаяся законам классической механики, не вышла бы из таких столкновений неизменной. А число электронов в атоме кислорода всегда одинаково, сколько бы они ни сталкивались с другими атомами. Два атома железа, а следовательно, и два железных бруска абсолютно идентичны, где бы они ни находились и что бы с ними ни происходило до этого. Квантовая теория показала, что эти свойства атомов обусловлены волновой природой их электронов. Твердость материи — результат типичного «квантового эффекта», обусловленного двойственной корпускулярно-волновой природой материи и не имеющего аналогов в обычном мире. Когда частица находится в ограниченном пространстве, она начинает реагировать на эту «стесненность» более активным движением. И чем сильнее ограниченность пространства, тем выше скорость.
В атоме действуют две противоположные силы. Электроны привязаны к ядру электрическими силами, которые стремятся удержать их как можно ближе к ядру. Но они реагируют на это, увеличивая скорость движения, и чем сильнее притяжение ядра, тем выше скорость. В ограниченном пространстве атома она может достигать тысячи километров в секунду![53] Поэтому атом воспринимается как жесткая сфера, так же как вращающийся пропеллер похож на диск. Очень сложно больше сжать атомы, поэтому они придают материи привычный нам твердый вид.
Электроны в атоме размещаются на разных орбитах, чтобы уравновесить притяжение ядра и противодействие ему. Но орбиты электронов очень отличаются от орбит планет Солнечной системы в силу их волновой природы. Атом нельзя изобразить в виде маленькой планетарной системы. Мы должны представлять себе не частицы, вращающиеся вокруг ядра, а вероятностные волны, распределенные по орбитам. Каждый раз, производя измерения, мы обнаруживаем электроны в какой-то другой точке орбиты, но не можем сказать, что они «вращаются вокруг ядра» в понимании классической механики.
На орбитах эти электронные волны формируют замкнутые паттерны «стоячих волн». Они возникают всегда, когда волны ограничены в некотором пространстве, как, например, упругие колебания гитарной струны или воздушные колебания внутри флейты (рис. 6).
Рис. 6. Стоячие волны в вибрирующей струне
Стоячие волны могут иметь ограниченное число очертаний. В случае с электронами внутри атома это значит, что они способны существовать только на определенных атомных орбитах, имеющих определенный диаметр. Например, электрон атома водорода будет находиться только на своей первой, второй или третьей орбите, но не между ними. При нормальных условиях он всегда оказывается на нижней орбите — в «стационарном состоянии». Оттуда электрон, получив необходимое количество энергии, может перескочить на более высокие орбиты, и тогда говорят, что он в «возбужденном состоянии», из которого может перейти в стационарное, отдав избыточное количество энергии в виде фотона, или кванта электромагнитного излучения. Все атомы с одинаковым числом электронов характеризуются одинаковыми очертаниями орбит и одинаковым расстоянием между ними. Поэтому два атома — например, кислорода — абсолютно идентичны. Приходя в возбужденное состояние, сталкиваясь в воздухе с другими атомами, они могут измениться, но в итоге неизбежно возвращаются в одно и то же «стационарное состояние». Именно волновая природа электронов обусловливает идентичность атомов одного химического элемента и их высокую механическую устойчивость.
Следующее характерное свойство состояний атомов состоит в том, что они могут быть полно описаны при помощи ряда целых чисел, получивших название квантовых и обозначающих местонахождение и форму электронных орбит. Первое квантовое число — номер орбиты, определяющий количество энергии, которым должен обладать электрон, чтобы находиться на ней; два других характеризуют точную форму волны на орбите, а также скорость и направление вращения электрона[54]. Поскольку эти параметры выражаются целыми числами, момент вращения электрона увеличивается не постепенно, а скачкообразно: от одной фиксированной величины к другой. Большие значения квантовых чисел соответствуют возбужденным состояниям атома, а электроны атома, находящегося в стационарном состоянии, расположены на максимально низких орбитах и имеют минимально возможное количество вращения.
Вероятности существования; частицы, которые в ответ на их ограничение в пространстве увеличивают скорость; внезапные переходы атомов из одного квантового состояния в другое и глубокая взаимосвязь всех явлений — вот некоторые черты необычного для нас мира атомов. Но основная сила, действующая в этом мире, известна и в привычной нам реальности. Это сила притяжения между положительно заряженным ядром и отрицательно заряженными электронами. Ее взаимодействие с электронными волнами порождает множество разнообразных структур и явлений, которые окружают нас. Оно регулирует все химические реакции и образование молекул, т. е. соединений, которые состоят из нескольких атомов, связанных силами взаимного притяжения. Таким образом, взаимодействие электронов с ядром составляет основу существования всех твердых тел, жидкостей и газов, а также живых организмов и биологических процессов, связанных с жизнедеятельностью последних.
В этом исключительно богатом атомном мире ядра играют роль предельно малых устойчивых центров, представляющих собой источник электрических сил и образующих основу множества молекулярных структур. Для понимания этих структур и в целом явлений природы нам достаточно знать величину заряда ядер и их массу. Но тот, кто хочет понять природу материи и знать, из чего она состоит, должен исследовать ядро атома, заключающее в себе почти всю массу последнего. Поэтому в 1930-е, после того как квантовая теория пролила свет на мир атома, главной задачей физиков стало изучение структуры ядра, его компонентов и сил притяжения между ними.
Первым важным шагом к пониманию структуры ядра было открытие его второго компонента (первый — протон) — нейтрона: частицы с массой, примерно равной массе протона, в 2000 раз превышающей массу электрона, но без заряда. Это не только продемонстрировало, что ядра всех химических элементов состоят из протонов и нейтронов, но и показало, что сила, связывающая частицы внутри ядра, — совершенно новое явление. Она не могла иметь электромагнитную природу, поскольку нейтроны электрически нейтральны. Физики поняли, что перед ними новая сила, не проявляющаяся нигде, кроме ядра.
Ядро атома в 100 тыс. раз меньше самого атома и всё же содержит в себе почти всю его массу. Это значит, что плотность вещества внутри ядра гораздо выше, чем в привычных нам формах материи. Если бы человеческое тело обладало плотностью ядра, оно было бы куда меньше булавочной головки. Но такая высокая плотность — не единственное необычное свойство ядерного вещества. Обладая, как и электроны, квантовой природой, «нуклоны» (так часто называют и протоны, и нейтроны) реагируют на ограниченность пространства, приобретая очень высокую скорость движения. А поскольку им отводится гораздо более ограниченный объем, их скорость достигает 60 тыс. км/с. Ядерное вещество — разновидность материи, которая не похожа ни на одну из других ее форм, существующих в нашем макроскопическом мире. Его можно сравнить с микроскопическими каплями чрезвычайно плотной жидкости, которые бурно кипят и булькают.
Новый аспект ядерной материи, определяющий его необычные свойства, — мощность ядерной силы, действующей только на очень близком расстоянии, когда нуклоны сближаются на дистанцию, равную примерно двум-трем их диаметрам. На таком расстоянии ядерная сила работает на притяжение. Но при его увеличении она становится отталкивающей и препятствует дальнейшему сближению нуклонов. Ядерные силы сохраняют ядро в исключительно стабильном, но динамическом равновесии.
Согласно результатам исследований, большая часть вещества ядра сосредоточена в микроскопических сгустках, разделенных огромными расстояниями. В пространстве между тяжелыми, бурлящими каплями ядер движутся электроны, которые составляют незначительную долю общей массы, но придают материи твердость и обеспечивают необходимые связи для образования молекулярных структур. Они также участвуют в химических реакциях и отвечают за химические свойства веществ. Но ядерные реакции в этой массе вещества не происходят, потому что имеющейся энергии недостаточно для нарушения равновесия внутри ядра.
Эта форма материи, обладающая многообразием форм и сложной молекулярной структурой, может существовать лишь при условии, что температура не очень высока, а движения молекул не очень сильны. При увеличении тепловой энергии примерно в 100 раз, как, например, внутри большинства звезд, все атомные и молекулярные структуры разрушаются. Получается, состояние большей части материи во Вселенной отличается от описанного выше. В центре звезд находятся большие скопления ядерного вещества. Там идут процессы, которые очень редко наблюдаются на Земле. Они вызывают астрономические явления, большая часть которых вызвана ядерными и гравитационными эффектами. Для нашей планеты особенно важны ядерные процессы в центре Солнца, питающие энергией околоземное пространство. Обнаружилось, что постоянный поток солнечной энергии, который является основой всей жизни на Земле, представляет собой результат ядерных реакций, т. е. процессов, происходящих в бесконечно малых пространствах. Вот он, триумф современной физики: осознание того, что приток солнечной энергии и наша связь с огромным миром становятся результатом реакций, происходящих внутри атома, т. е. явлений, которые можно отнести к бесконечно малым.
В начале 1930-х в истории изучения микромира наступил момент, когда физики испытали уверенность в том, что «строительные блоки» материи наконец открыты. Тогда стало известно, что вся материя состоит из атомов, а атомы — из протонов, нейтронов и электронов. Эти так называемые элементарные частицы воспринимались как конечные неделимые единицы материи, подобные атомам Демокрита. Как было сказано раньше, из квантовой теории следует, что мир нельзя разложить на отдельные мельчайшие составляющие, но в то время это воспринимали далеко не все. Классическое мышление было всё еще настолько сильно, что многие физики верили, будто материя состоит из «фундаментальных строительных блоков». Даже сейчас у этой точки зрения много сторонников.
Но два важных достижения физики показали, что пора отказаться от представлений об элементарных частицах как о мельчайших составляющих материи. Первое носило экспериментальный характер, второе — теоретический, и оба были сделаны в 1930-е. Усовершенствование техники эксперимента и разработка новых приборов обнаружения частиц помогли открыть новые их разновидности. Так, к 1935 г. было известно уже не три, а шесть элементарных частиц, к 1955 г. — 18, а к 1974 г. — более 200. В такой ситуации слово «элементарная» уже вряд ли применимо. В таблицах 1–2[55] приведены данные о большинстве из известных к 1974 г. частиц[56].
Таблица 1. Таблица мезонов, апрель 1974 г.
Таблица 2. Таблица барионов, апрель 1974 г.
Получается, прилагательное «элементарные» уже не настолько привлекательно, как раньше. По мере увеличения числа известных частиц росла уверенность в том, что не все они подходят под это определение, а уже в 1970-е многие физики считали, что этого названия не заслуживает ни одна из них.
Эта точка зрения подкрепляется теоретическими разработками, проводившимися одновременно с экспериментальным изучением частиц. Вскоре после формулировки квантовой теории стало очевидно, что она не может быть всеобъемлющим инструментом для описания ядерных явлений и должна быть дополнена теорией относительности. Дело в том, что частицы в пределах ядра часто движутся со скоростью, близкой к скорости света. Это очень важно, поскольку описание любого природного явления, в котором действуют скорости, близкие к световой, должно учитывать теорию относительности, т. е. быть, как говорят физики, «релятивистским». Для точного понимания ядра нам нужна модель, объединяющая теорию относительности и квантовую теорию. Она еще не создана, и попытки полного описания ядра пока не увенчались успехом. Мы немало знаем о строении ядра и взаимодействиях его частиц, но не располагаем фундаментальным пониманием природы ядерных сил и сложной формы, в которой они проявляются. Не существует и всеобъемлющей теории атомной частицы, сопоставимой с описанием атома в квантовой теории. Есть несколько «квантово-релятивистских» моделей, удовлетворительно раскрывающих отдельные аспекты мира частиц, но соединение квантовой теории и теории относительности и создание общей теории частиц остаются главными из пока не решенных задач современной физики.
Теория относительности заметно повлияла на наши представления о материи, заставив нас существенно пересмотреть понятия об элементарных частицах. В классической физике масса тела всегда ассоциировалась с некой неделимой материальной субстанцией — «материалом», из которого состоит всё. Теория относительности показала, что масса не имеет отношения ни к какой субстанции, будучи одной из форм энергии. Но энергия — динамическая величина, связанная с действием или процессами. Поскольку масса частицы эквивалентна определенному количеству энергии, частица не может уже восприниматься как статический объект. Она должна пониматься как динамическая модель, процесс, вовлекающий энергию, которая проявляется в массе данной частицы.
Начало новому взгляду на элементарные частицы положил Поль Дирак, сформулировавший релятивистское уравнение для описания поведения электронов. Его модель не только успешно объясняла мельчайшие детали строения атома, но и раскрывала фундаментальную симметричность между материей и антиматерией. Так, Дирак предсказал существование антиэлектрона, обладающего массой электрона, но с противоположным зарядом. Пару лет спустя была открыта положительно заряженная частица — позитрон. Из принципа симметричности материи и антиматерии следует, что для каждой частицы есть античастица с той же массой и тем же зарядом, но противоположным знаком. Пары частиц и античастиц могут быть созданы при наличии достаточного количества энергии и обращены в чистую энергию в процессе взаимного уничтожения. Существование процессов синтеза и аннигиляции частиц было предсказано теорией Дирака до того, как они были открыты, и с тех пор ученые наблюдали эти процессы в лабораториях миллионы раз.
Возможность возникновения материальных частиц из чистой энергии — самый необыкновенный эффект теории относительности, который можно объяснить только при использовании вышеописанного подхода. До того как физика стала рассматривать частицы с позиции теории относительности, считалось, что материя состоит либо из неделимых и неизменных элементарных единиц, либо из объектов, которые можно разложить на более мелкие составляющие. И вопрос был только в том, можно ли бесконечно делить материю на всё более мелкие единицы и в конце концов получить мельчайшие неделимые частицы. Открытие Дирака представило проблему делимости вещества в новом свете. При столкновении двух частиц с высокой энергией они обычно разбиваются на части, размеры которых не меньше размеров исходных. Это частицы того же типа, возникающие из энергии движения (кинетической), задействованной в процессе столкновения. В результате проблема делимости материи решается неожиданным путем. Единственный способ деления внутриатомных частиц — их столкновение с использованием высокой энергии. Мы можем делить материю вновь и вновь, но не получаем более мелких частей, поскольку частицы создаются энергией. Получается, субатомные частицы одновременно и делимы, и неделимы.
Такая ситуация кажется парадоксальной, пока мы придерживаемся гипотезы о «составных объектах», состоящих из «строительных кирпичиков». Противоречие исчезает при динамическом релятивистском подходе. Тогда частицы воспринимаются как динамические модели или процессы, задействующие некоторое количество энергии, которая заключена в их массе. В процессе столкновения энергия двух частиц перераспределяется и образует новый объект. И если кинетическая энергия столкновения достаточно велика, новый объект может включать дополнительные частицы.
Высокоэнергетические столкновения внутриатомных частиц — основной метод, который используют ученые для изучения их свойств. Поэтому физика частиц носит также название «физики высоких энергий». Кинетическая энергия, необходимая для экспериментов по столкновению частиц, достигается в огромных, несколько метров в окружности ускорителях, в которых протоны разгоняются до скорости, близкой к световой, а затем сталкиваются с другими протонами или нейтронами. Поразительно, какие гигантские машины нужны для изучения бесконечно малого мира. Это своего рода супермикроскопы современности.
Большинство частиц, возникающих при столкновениях, недолговечны и существуют меньше одной миллионной доли секунды, после чего снова распадаются на протоны, нейтроны и электроны. При этом можно не только обнаружить эти частицы и измерить их характеристики, но и сфотографировать оставленные ими следы! Для этого используются специальные «пузырьковые камеры». Принцип их действия схож с принципом образования инверсионного следа в небе от реактивного самолета. Сами частицы на несколько порядков меньше пузырьков, составляющих следы частиц, но по толщине и искривленности траектории физики могут определить, какая частица его оставила. На рисунке 7 приведена картинка такого следа.
Рис. 7. Эта фотография, как и другие подобные ей, — обращенный негатив, на котором следы движения частиц видны отчетливее
В точках, из которых исходит несколько треков, происходят столкновения частиц; искривления возникают из-за использования исследователями магнитных полей для определения частиц. Столкновения частиц — основной экспериментальный метод изучения их свойств и взаимодействий, а красивые линии, спирали и дуги в пузырьковых камерах крайне важны для современной физики.
Эксперименты середины XX в. в области физики высоких энергий раскрыли динамическую и постоянно меняющуюся природу частиц. Материя в них способна к любым трансформациям. Любая частица может быть преобразована в другую; энергия способна создавать частицы и наоборот. В этом мире теряют смысл такие понятия классической физики, как «элементарная частица», «материальная субстанция» и «изолированный объект». Вселенная предстает в виде динамической сети неразрывно взаимосвязанных энергетических моделей. Всеобъемлющая теория для описания мира субатомных частиц еще не создана, но уже сейчас есть несколько теоретических моделей, вполне удовлетворительно описывающих ее отдельные аспекты. Все они несвободны от математической сложности и порой противоречат друг другу, но отражают глубинное единство и изначальную изменчивость материи. Они показывают, что свойства частицы могут быть определены только в терминах ее активности, т. е. взаимодействия с окружающей средой, и частицы следует рассматривать не как самостоятельные единицы, а как неотъемлемые части единого целого.
Теория относительности радикально изменила наши представления не только о самих частицах, но и о действующих между ними силах. Для релятивистов взаимодействия между частицами, их взаимные притяжения и отталкивания выглядят как обмен частицами. Эту картину сложно представить визуально. Всё объясняется четырехмерной пространственно-временной сущностью внутриатомного мира. Ни интуитивно, ни с помощью языка удовлетворительно представить эту реальность почти невозможно. Но это необходимо, если мы хотим постичь явления субатомного уровня. Теория относительности связывает силы, действующие между составными частями вещества, со свойствами этих частей и тем самым объединяет два понятия — силы и материи, — которые со времен греческих атомистов казались самостоятельными. Теперь мы понимаем, что и сила, и материя берут начало в динамических моделях, которые мы называем частицами.
Частицы взаимодействуют при помощи сил, которые проявляются в обмене другими частицами. Это еще одно свидетельство в пользу невозможности разделения внутриатомного мира на составляющие. От нашего видимого невооруженным глазом мира и до микроскопического уровня ядра силы притяжения между объектами относительно слабы. В качестве приближения можно сказать, что всё состоит из неких элементов: крупинка соли — из молекул, молекулы соли — из двух разновидностей атомов, атомы — из ядер и электронов, а ядра — из протонов и нейтронов. Но на уровне частиц такое допущение неприменимо.
В конце XX в. появилось много свидетельств в пользу того, что протоны и нейтроны тоже могут быть разложены на составляющие. Однако силы притяжения внутри них столь сильны или (что по сути равнозначно) скорость движения этих частиц столь велика, что к ним тоже должна применяться теория относительности, в рамках которой все силы одновременно оказываются частицами. Так стирается различие между частицами — компонентами нуклона и частицами, проявляющимися в форме сил притяжения, и вышеупомянутое утверждение об элементах вещей теряет смысл. Мир частиц нельзя разложить на составляющие.
Согласно современной физике, Вселенная — динамичное неделимое целое, включающее в качестве важного объекта наблюдателя. Традиционные понятия пространства и времени, изолированных объектов, причины и следствия утрачивают смысл. Схожие представления издавна существовали в восточных религиозно-мистических учениях. Эта параллель становится очевидной в квантовой теории и теории относительности и в еще более значительной степени при рассмотрении квантово-релятивистских моделей ядерной физики, объединяющих обе теории.
Прежде чем подробно обсуждать эти параллели, я кратко расскажу о некоторых философских учениях Востока, которые связаны с проводимыми сравнениями. Некоторые из них, вероятно, пока мало знакомы читателю — философские школы индуизма, буддизма и даосизма. В следующих пяти главах описаны особенности философских воззрений этих духовных традиций, а также исторический фон, в котором они формировались. Наибольшее внимание уделяется тем разделам учений, которые особенно важны для сопоставления с физикой.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОК