Исследования термодинамики

We use cookies. Read the Privacy and Cookie Policy

В то время в Германии было принято получать образование не в одном университете, поэтому Макс Планк в 1877 году оставил Мюнхен и отправился в Берлин. Там его наставниками стали Герман фон Гельмгольц (1821-1894) и Густаф Кирхгоф (1824-1887). Обоих относят к плеяде великих физиков XIX века, но, по мнению самого Планка, ученые были не очень хорошими педагогами. В своей краткой научной биографии Планк описывает Гельмгольца как плохого преподавателя, который не готовился к занятиям и постоянно ошибался в расчетах у доски. Казалось, что занятия со студентами нагоняли на него скуку, которая передавалась и студентам, так что, по словам Планка, к концу курса на занятия приходили всего трое человек, включая его самого.

Плохую подготовку к занятиям Германа фон Гельмгольца можно оправдать его погруженностью именно в этот период в изучение электромагнетизма и теории Максвелла. В Германии идеи Максвелла не были распространены, и только благодаря Гельмгольцу в его стране пробудился интерес к теории электромагнетизма. В июле 1879 года Прусская академия наук по инициативе ученого объявила о премии за подтверждение или опровержение теории Максвелла для высокочастотных цепей. Премию получил ученик Гельмгольца — Генрих Герц (1857-1894). Его исследования приведут к открытию в 1888 году электромагнитных волн и окончательному подтверждению теории Масквелла.

ТРИ ПРИМЕРА ТЕХНОЛОГИЧЕСКОЙ МОЩИ ГЕРМАНИИ

Предприятие Siemens, названное по фамилии основателя, Эрнста Вернера фон Сименса (1816-1892), было лидером электрификации Германии и большой части Европы. Созданная им телеграфно-строительная фирма выпускала альтернаторы и динамо-машины для получения электричества, а также двигатели и лампы для его потребления. Занималось предприятие и электропоездами. Уже упомянутый Имперский институт физики и технологии получил от Siemens дотацию и занимался вопросами электроосвещения. Пережив две мировые войны, Siemens остается мощной транснациональной компанией.

Предприятие Zeiss, основанное немецким оптиком Карлом Цейсом (1816-1888) в 1846 году, с самого начала было одним из главных поставщиков точных оптических инструментов. Именно на Zeiss был произведен микроскоп, с помощью которого Рамон-и-Кахаль открыл синапс нейрона и изучал структуру сетчатки млекопитающих. Компания существует по сей день и считается лидером в своей отрасли.

Третье из упомянутых предприятий-гигантов — Bayer, возможно, самое известное, было основано в 1863 году Фридрихом Байером (1825-1880). Продажи знаменитого аспирина Bayer стартовали в конце XIX века и продолжаются до сих пор. Во время Второй мировой войны Bayer стала частью конгломерата немецких компаний химической промышленности Farben IG, который построил завод по производству синтетического каучука рядом с Освенцимом, используя рабский труд заключенных. После войны конгломерат был разделен на три предприятия: Bayer, Basf и Hoechst — все три до сих пор считаются транснациональными гигантами.

Эльберфельд, Германия, 1878 год. Рабочие в лаборатории компании Bayer AG (создана Фридрихом Байером в 1863 году).

Несмотря на то что лекции Гельмгольца зимой 1877 года не вызывали у студентов большого восторга, Планк на них из первых уст получил информацию о перспективах электромагнетизма — научной области, занявшей важное место в его собственных исследованиях. По всей видимости, Планк, вернувшись в Берлин в качестве профессора, поддерживал дружеские отношения с Гельмгольцем до его смерти в 1894 году.

В отличие от небрежного Гельмгольца, второй преподаватель Планка, Густав Кирхгоф, напротив, так тщательно готовился к лекциям, что заучивал их наизусть и читал без малейших отступлений, так что слушатели с трудом подавляли зевоту. Но опять-таки (и, возможно, для Планка это было намного важнее лекций) преподаватель познакомил талантливого студента с авангардом научной мысли того времени. Кирхгоф стал его проводником в мир новейших исследований в области термодинамики. Годы спустя на Планка будет возложена публикация посмертных «Лекций по теории теплового излучения» Кирхгофа.

Третьим ученым, повлиявшим на Планка в годы его пребывания в Берлине, стал Рудольф Клаузиус (1822-1888). Несмотря на предпринятые попытки, Планк не смог познакомиться с ним лично, но прочитал работы Клаузиуса по термодинамике и погрузился в их изучение со страстью, которая больше не угаснет в нем никогда.

МАКСВЕЛЛ И ВЕЛИКИЙ ЭЛЕКТРОМАГНИТНЫЙ СИНТЕЗ

В середине XIX века развитие теории электромагнетизма находилось на распутье. Благодаря работам Ампера (1775-1836), Фарадея (1791-1867) и других физиков того времени было накоплено много важных экспериментальных данных и законов, доказывающих неразрывную связь электричества и магнетизма. Для объяснения открытых феноменов имелось два варианта представлений. Были сторонники теории взаимодействия на расстоянии, были и те, кто защищал теорию полей. Эрнст Генрих Вебер (1795- 1878) в Германии предложил формулу, объясняющую все статические и динамические электрические и магнитные силы на основании взаимодействия электрических зарядов на расстоянии.

Его формула была похожа на формулу гравитационного притяжения двух тел, но с большим количеством переменных, связанным со скоростью и ускорением частиц. Но один из преподавателей Планка, Гельмгольц, около 1870 года с помощью закона сохранения энергии доказал, что формула Вебера безосновательна. С другой стороны, имелась теория полей, своим рождением обязанная Майклу Фарадею, который представлял, что пространство вокруг магнита заполнено нитями — невидимыми силовыми линиями, натяжение которых отвечало за силы притяжения или отталкивания между полюсами магнита. Также Фарадей представлял электрические силовые линии, соединяющие положительные и отрицательные заряды и создающие притяжение. Шотландец Джеймс Клерк Максвелл (1831-1879) нашел математическое выражение идей Фарадея и сформулировал унифицированную теорию законов электричества и магнетизма. Его теория была изначально механической и предполагала, что все электромагнетические явления были следствием динамики в постоянной среде — эфире, заполняющем пространство. Теория Максвелла учитывала не только все основные известные явления, но и предсказывала, что эфир может передавать волны, как твердое тело передает колебания. Максвелл рассчитал скорость, которой должны были обладать эти волны, и нашел величину, близкую к скорости света. Он писал: «Мы едва ли можем отказаться от вывода, что свет состоит из поперечных колебаний той же самой среды, которая является причиной электрических и магнитных явлений».

К тому времени, когда Планк отправился учиться в Берлин, были уже сформулированы два начала термодинамики. Первое начало выражает сохранение энергии, одна из его наиболее известных формулировок: «Энергия не создается и не разрушается, а только переходит из одной формы в другую». Этот закон был открыт в середине века учеными Джеймсом Джоулем (1818-1889), Юлиусом фон Майером (1814-1878), Уильямом Томсоном (позже известным как лорд Кельвин; 1824-1907) и самим Гельмгольцем. Суть открытия состояла в том, что существует количественное равенство между механической работой и разными формами энергии, способными производить работу и тепло. В 1840-х годах британский ученый Джеймс Джоуль провел серию опытов, доказавших эквивалентность разных форм энергии. Самый известный из этих опытов легче всего объяснить, хотя не так просто осуществить; состоит он в том, что опускаемый груз заставляет вращаться лопасти внутри сосуда с водой. Как показано на рисунке, блок, трос и ось передают движение груза на лопасти. Сосуд был термически изолирован, и Джоуль заметил, что вода в нем нагревается, когда груз опускается. Потенциальная гравитационная энергия груза превращалась в тепло. Джоуль пришел к выводу: для того чтобы нагреть фунт воды с 50 до 51 градуса по Фаренгейту, необходимо опустить груз весом 817 фунтов на один фут.

Этот опыт Джоуля доказал, что потенциальная гравитационная энергия может превратиться в тепло. Так, для того чтобы нагреть фунт воды с 50 до 51 градуса по Фаренгейту, необходимо опустить груз весом 817 фунтов на один фут.

-----------врезка----------

МНОГОЛИКАЯ ЭНЕРГИЯ

В честь Джоуля назван джоуль (Дж) — единица измерения работы и энергии в Международной системе единиц. Мы можем получить 1000 Дж разными способами:

а) при сгорании 64 мг глюкозы и получении воды и углекислого газа. Глюкоза содержит то, что мы называем химической энергией. Эта реакция постоянно протекает в наших мускулах, и в ее результате мы совершаем механическую работу при наших движениях и вырабатываем тепло;

б) при горении 0,1600 микрограмма (1,6 • 10-9 г) водорода с образованием гелия. Этот процесс горения, происходящий в звездах, является источником солнечной энергии.

Имея 1000 Дж, мы можем:

— придать теннисному мячу скорость 360 км/ч (это пример кинетической энергии);

— заставить крутиться волчок с частотой 1800 оборотов в минуту (также кинетическая энергия);

— поднять 1 кг яблок на высоту примерно 100 м (яблоки при этом получат потенциальную гравитационную энергию);

— подогреть 1 литр воды, повысив температуру на 0,25°С (именно это сделал Джоуль в своем опыте, превратив работу в тепло).

Первое начало термодинамики имеет следующее математическое выражение: внутренняя энергия физической системы увеличивается пропорционально увеличению тепла и уменьшается пропорционально выполненной работе. Обозначив через AU изменение энергии, через W — работу системы, через Q — тепло, переданное системе, мы получим:

AU=Q-W.

Одно из наиболее известных следствий первого начала состоит в том, что машина не может работать, не получая энергию извне. По завершении полного цикла работы конечное состояние машины будет равно начальному, поэтому ?U = 0. Если мы хотим, чтобы машина выполняла работу W в течение одного цикла, нам необходимо сообщить ей тепло Q так, чтобы Q — W = 0. Существование машины, работающей без внешней энергии, противоречит первому началу термодинамики. Такая машина называется вечным двигателем первого рода.

Невозможно построить периодически действующую машину, которая не производит ничего другого, кроме поднятия груза и охлаждения резервуара теплоты.

Планк, определение второго начала термодинамики в «Лекциях по термодинамике» (1897)

После первого начала появилось и второе, имевшее разные, но при этом эквивалентные формулировки. На наш взгляд, формулировка Клаузиуса наиболее соответствует повседневному опыту: «Не существует процесса, единственным результатом которого является передача количества теплоты от менее нагретого тела к более нагретому». Другими словами, тепло переходит от горячих тел к холодным, а не наоборот.

Иногда вечным двигателем второго рода называют такой двигатель, которой способен полностью превратить в работу все полученное тепло. Согласно формулировке Планка создать такой двигатель невозможно. Однако если заглянуть в интернет, то мы обнаружим, что сотни людей утверждают: они знают, как сделать двигатель, работа которого противоречит второму началу термодинамики. Некоторые даже продают такие двигатели! Несмотря на различия формулировка Планка эквивалентна формулировке Клаузиуса, и в любом базовом тексте по термодинамике легко можно найти подтверждения этой эквивалентности.

Со вторым началом термодинамики связано понятие энтропиивведенное Клаузиусом. Ученый использовал для данного термина греческое слово evipoma, то есть «превращение». Для обозначения понятия обычно используется буква S. Энтропия — свойство всех макроскопических физических систем, независимо от того, идет речь об одном теле или нескольких взаимодействующих объектах. Когда мы сообщаем телу с температурой Т определенное количество тепла Q мы увеличиваем его энтропию на величину ?S, согласно формуле:

?S = Q/Т.

Второе начало термодинамики можно сформулировать так: «Энтропия изолированной системы не может уменьшаться. Она всегда увеличивается или остается неизменной».

Данная формулировка гораздо более абстрактна и, очевидно, более загадочна, но также более полезна с точки зрения теоретической физики. Макс Планк использовал ее в своих работах об излучении черного тела, именно поэтому мы на ней и остановимся.

Мы можем увидеть, что эта формулировка эквивалентна формулировке Клаузиуса, если представим себе два тела с температурами T1 и T2, например два стакана воды (см. рисунок). Затем заберем часть тепла Q у первого стакана и сообщим ее второму. Энтропия первого уменьшится на Q/T1 а у второго — увеличится на Q/T2. Общая энтропия системы изменится таким образом:

?S = Q/T2 - Q/T1 = Q(1/T2 - 1/T1).

Для увеличения энтропии разница 1/Т2-1/Т1 должна быть положительной, для этого Т1 должна быть больше Т2 То есть горячее тело отдало часть тепла, а холодное тело приняло ее. Обратный процесс, при котором энтропия уменьшилась бы, невозможен.

При смешивании холодной воды с теплой получается вода средней температуры. Общая энтропия в течение процесса увеличивается.

Второе начало термодинамики имеет много следствий, которые мы можем наблюдать ежедневно. К одному из них относится переход энергии из одного вида в другой. Что произойдет, если мы бросим камень на пол? Он подпрыгнет один или два раза и остановится. Энергия, которая была передана камню, потеряна? Нет, трение о воздух и о пол превратило ее в тепло. В случае с камнем заметить это тепло нелегко, но если дотронуться до тормозного диска мотоцикла после резкого торможения, мы заметим разницу в температуре диска и окружающих его тел. Также мы можем наблюдать преобразование энергии, осмотрев кратеры, оставленные на поверхности Земли большими метеоритами. Известно около 160 кратеров, и в них камни и песок поверхности оплавились и остыли, и теперь их внешний облик отличается от обычного. Эти процессы — примеры того, как начальная механическая энергия камня, колеса мотоцикла или метеорита полностью превращается в тепло.

Согласно формулировке второго начала термодинамики, невозможно создать двигатель, который мог бы превращать в работу все получаемое тепло. Как показано на иллюстрации, мы можем подбросить камень с помощью тепла, но мы не можем использовать все тепло, рассеянное при движении камня.

Можем ли мы собрать рассеянную при падении камня по полу энергию и воздействовать ею на камень, чтобы запустить его в обратном направлении с той же скоростью, которая была у него первоначально? Нет, нам для этого нужно немного больше энергии. Мы можем подтолкнуть камень с помощью тепла, но, согласно формулировке Планка, мы не можем использовать все тепло, которое рассеялось по полу, для движения камня (см. рисунок). Часть этого тепла неизбежно будет потеряна в окружающей среде.

Подобное ежедневно происходит с двигателями наших автомобилей. Химическая энергия взрывающейся смеси бензина и воздуха превращается в тепло. Сжатые горячие газы, образовавшиеся в результате взрыва, толкают поршень, который, в свою очередь, двигает коленчатый вал, а далее серия зубчатых механизмов передает тягу на колеса. Часть энергии, образовавшейся от взрыва бензина, используется для движения машины, при этом другая ее часть неизбежно направляется на нагрев двигателя и окружающей среды. Второе начало термодинамики объясняет нам, что эти «потери» энергии неизбежны. (Мы поместили слово «потери» в кавычки, так как согласно первому началу термодинамики энергия, строго говоря, не была потеряна. Она превратилась в тепло.)

Объединяя математическое выражение первого и второго начал термодинамики, получаем уравнение:

T?S = ?U + W,

связывающее температуру, энтропию, энергию и работу. Это выражение использовал Планк в своих исследованиях излучения черного тела.