Во что превратились звуковые волны
Итак, мы уже поняли, что солитоны перемещаются со скоростями, меньшими v0. А как же с обычными звуковыми волнами — могут ли они распространяться в среде, смоделированной Френкелем и Конторовой?
Возвратимся к уравнению (6.2). Даже для волн очень малой амплитуды его правую часть отбросить нельзя. Можно только приближенно заменить ее на -2?f0(yn/?). Тогда сразу видно, что yn(t) будет изменяться по синусоидальному закону, если величина «эффективной массы» m• отрицательна. При положительной эффективной массе никаких колебаний yn(t) не получится (вспомните гл. 4!). Предположим поэтому, что m•
Итак, подставим в формулу (6.2) соотношение (6.3) и заменим sin [2? (yn/?)] на 2? (yn/?). Для уn(t) получаем тогда уравнение малых (линейных) колебаний
Решения этого уравнения, например
уn(t) = уn(tn) соs [?(t - tn)],
описывают, как и раньше, бегущие волны. Вспоминая рассуждения, приведенные при выводе формулы (6.5), представим волну смещения атомов в виде
у(t, х) = у0 соs [?(t - x/v)].
Зависимость круговой частоты волны ? от фазовой скорости определяется формулой (6.8). Из условия связи длины волны с частотой и скоростью, т. е. из обычного соотношения ? = v/
Упражнение: получите формулы (6.8), (6.9), воспользовавшись формулами (6.2), (6.3). Найдите групповую скорость и из формулы (5.23).
О т в е т:
Зависимость скорости v от длины волны ? изображается хорошо изученной нами кривой — гиперболой. Обозначив v/v0 = X и ?/?0 = Y, можно записать уравнение (6.9) в более знакомом и приятном виде как Y2 - Х2 = 1. Как мы уже убедились в гл.4, точки этой кривой можно находить с помощью циркуля и линейки. Это построение выполнено на рис. 6.4, где
введены обозначения X1 = ?1/?0 , Y1 = v1/v0, 1/Y1 = u1/v0, ?1 — интересующее нас значение длины волны, v1 — соответствующее значение фазовой скорости, определяемое формулой (6.9), а u1 = v02/v1 — значение групповой скорости.
Упражнение: выполните построение рис. 6.4. Покажите, что координаты точки А1 подчиняются соотношению (6.9), координаты точки С1 равны ?0/?1 и u1/v0 = v0/v1, где ?1 — значение ?, соответствующее заданному значению ? = ?1.
Полученный нами закон дисперсии очень часто встречается в самых разных физических явлениях, и стоит потратить некоторое время, чтобы как следует понять его. Особенно полезно представить его с помощью дисперсионной формулы
которая легко получается заменой в формуле (6.9) отношения v/v0 на (??/?0?0).
Отсюда сразу видно замечательное свойство этого закона дисперсии — частота распространяющихся по цепочке волн всегда выше частоты ?0, с которой колебался бы каждый атом цепочки вблизи своего положения равновесия, если бы он находился только под действием «подкладки». Физически очевидно, что частота ?0 достигается при очень большой длине волны, когда соседние атомы смещаются без изменения относительно расстояния (как твердое тело). При этом пружины настолько слабо деформируются, что их как бы и нет.
Другое свойство закона дисперсии (6.9) роднит его с гравитационными волнами на глубокой воде. Мы видим, что фазовая скорость v(?) увеличивается с увеличением длины волны. Правда, эта зависимость несколько иная — скорость очень длинных волн на воде пропорциональна
При выводе закона дисперсии мы, в сущности, с самого начала пренебрегали дискретной структурой, предполагая, что ?
Если это не вполне понятно, нужно вспомнить начало предыдущей главы, где описаны колебания системы из двух и трех грузиков, соединенных пружинками. Эти колебания соответствуют стоячим волнам сплошной резинки (рис. 5.4 и 5.5), но только нельзя рассматривать волны с длиной, меньшей 2?. Более точное описание дефекта по Френкелю можно найти с помощью исходного уравнения (6.1). Если пружины очень мягкие, т. е. если k?
Раз уж мы вспомнили переход от цепочки атомов к сплошной среде, стоит написать, во что превратится при таком переходе основное уравнение (6.1). Как и при выводе уравнения Д'Аламбера, можно считать, что второй член в правой части перейдет в k?2y". Переходя от y(t, х) к ?(t, х) (вспомните вывод уравнений (6.4), (6.5), найдем в результате, что
Если ?0 = 0, то из этого уравнения получается уравнение Д'Аламбера.
К уравнению (6.11) приклеилось странное название — уравнение «синус-Гордона». Происхождение этого жаргонного наименования связано с тем, что при значениях ?, мало отличающихся от ?, т. е. ? = ? + ?, где
Это, а если говорить совсем точно, несколько более общее уравнение было предложено в 1926 г. Э. Шрёдингером, О. Клейном, В. Гордоном и В. А. Фоком, и обычно физики для краткости называют его уравнением Клейна — Гордона. Подобное стремление к укорочению названий породило и сочетание «синус-Гордона».
На самом деле уравнение (6.12) было известно уже в прошлом веке и называлось уравнением струны в упругой среде (действие упругой среды на каждый кусочек струны описывается членом
*) Любому решению этого уравнения соответствует некоторая поверхность, на которой выполняются аксиомы геометрии Лобачевского. Такие реализации геометрии Лобачевского сыграли основную роль в признании его идей.