Как измерили скорость звука
До конца XVIII в. думали, что звук в твердых телах передается мгновенно. Первое измерение скорости звука в твердых телах по отношению к скорости в воздухе выполнил в 1797 г. немецкий ученый Эрнст Хладни (1756—1827). Он же провел первые точные и тщательные измерения скорости звука в различных газах, пользуясь для этой цели органными трубами. Хладни получил юридическое образование, а естественные науки изучал самостоятельно. Под влиянием чтения сочинений Бернулли и Эйлера он заинтересовался акустикой и начал изучать звучащие пластинки, в результате чего открыл прославившие его «звуковые фигуры» *). Фигуры Хладни образуются на посыпанных песком колеблющихся пластинках (песок собирается в узлах стоячих волн).
*) Первым сумел сделать звуковые колебания «видимыми» Галилей. Он поместил бокал в воду так, чтобы края его немного выступали над поверхностью. При возбуждении в бокале звуковых колебаний около него на поверхности образуется радиальная рябь поверхностных волн.
Хладни также открыл продольные и вращательные колебания в стержнях, открыл и изучил многие акустические колебательные явления, изобрел несколько музыкальных инструментов, на которых сам играл. Его опыты, всегда отличавшиеся изобретательностью и остроумием, заложили основы экспериментальной акустики, и ему принадлежит первое систематическое изложение акустики, выпущенное в свет в 1802 г. Под впечатлением обаяния личности Хладни, его лекций и опытов, Наполеон выделил 6000 франков для перевода его «Акустики» на французский язык.
Скорость распространения звуковых волн можно оценить и просто из соображений размерности. Так как механизм распространения волн нам уже достаточно понятен, нетрудно сообразить, что скорость звука в стержне зависит лишь от модуля Юнга Е, плотности ? и, может быть, от длины волны ?: v = d•Еа?Ь?с. Так как [Е] = ML-1Т-2, [?] = ML-3, [?] = L и [v] = LТ-1, то а = -b = 1/2, с = 0, т. е. v = d
Любопытно, что простые соображения размерности показали, что скорость звука не может быть пропорциональна какой-нибудь степени. Это значит, что дисперсию (т. е. зависимость скорости от длины волны) из простых соображений размерности получить нельзя. Заметим также, что мы не учли зависимость v от амплитуды колебаний. Это представляется разумным для малых амплитуд, когда эффектами нелинейности можно пренебречь (ср. с формулой (4.1)).
При отсутствии дисперсии из соображений размерности следует независимость скорости звука от амплитуды. Проверьте это, предположив, что в формуле размерности для v показатель с = 0, но введя зависимость от амплитуды.
Точно так же можно оценить скорость звука в жидкостях, например в воде. Только в этом случае вместо модуля Юнга надо взять модуль объемной упругости жидкости К. Он определяется соотношением ?p = K (?V/V), где ?p — приращение давления, необходимое для того, чтобы уменьшить объем V на величину ?V. Эта формула совершенно аналогична соотношению F/S = E(?l/l) для стержня, и мы сразу можем найти скорость звука в жидкостях:
Между прочим, до начала XIX в. распространение звука в жидкостях считалось невозможным. Хладни придерживался противоположного мнения, но попыток измерить скорость звука в жидкостях не делал. Первое измерение было выполнено в год смерти Хладни швейцарскими учеными Жаном Колладоном и Жаном Штурмом, получившими значение v = 1435 м/с при температуре 8 0С.
Читатель легко найдет и скорость распространения поперечных волн в натянутой струне. В этом случае возвращающая сила пропорциональна силе натяжения струны F, и при малом изгибе и растяжении струны не зависит от ее упругости. Предполагая, что v = dFa?lЬ, где ?l — линейная плотность струны, покажите, что
Опыты удобнее всего делать с леской. Изменяя ее натяжение, можно менять частоту основного тона, который можно отождествить с одной из нот, извлекаемых на фортепиано. Нота «ля» первой октавы обычно настраивается с помощью камертона на частоту
Определяя частоты с помощью фортепиано или другого музыкального инструмента, можно найти скорость распространения волны по формуле v = ?
Легко найти и скорость звука в газах. Аналог модуля упругости в этом случае — давление. Действительно, из закона Бойля—Мариотта pV = const следует, что V•?p + p•?V = 0, т. е. ?p = -p(?V/V). Подставляя в формулу для скорости звука в жидкости вместо модуля объемной упругости давление, находим
Кроме того, величина v, полученная Ньютоном, сильно расходилась с наблюдаемым значением *). Это было известно Ньютону, но его объяснение этого расхождения нельзя признать ни понятным, ни убедительным. Эта трудность только усилилась после опытов Хладни, который выяснил, что формула Ньютона сильно расходится с опытом и для других газов. Bычислим по формуле Ньютона скорость v для воздуха. Так как р/? = гT, где г — газовая постоянная, а Т — температура, то для воздуха при Т = 273 К = 0 0С получаем v
*) Первое точное измерение скорости звука в воздухе было сделано в коллективной работе членов Парижской академии наук в 1738 г. Измерялось время, за которое звук пушечного выстрела проходит 30 км. Чтобы исключить влияние ветра, выстрелы производились одновременно из двух пушек, удаленных друг от друга на 30 км.
Правильное объяснение этому расхождению нашел Лаплас, заметивший, что при прохождении звуковой волны температура воздуха в местах сгущения и разрежения различна, и законом Бойля—Мариотта пользоваться нельзя. Вместо этого Лаплас предположил, что изменения состояния газа в звуковой волне происходят столь быстро, что тепло не успевает передаваться от нагревшихся сжатых участков к охладившимся разреженным, т. е. процесс происходит адиабатически **). Правильность его объяснения оспаривалась еще лет тридцать. Тем не менее общая теория волновых процессов уже в начале века твердо стояла на ногах и быстро завоевывала новые области для своих приложений.
**) См. книгу: Смородинский Я. А. Температура. — 2-e изд.— М.: Наука, 1987. — Библиотечка «Квант», вып. 12.
Особенно важно это было для волновой теории света. В работах Френеля волновая теория была настолько основательно разработана, что успешно объясняла не только явления, известные до ее победы, но и подсказывала новые. Единственная неудача постигла волновую теорию в объяснении явлений дисперсии света. Как и в теории звука, в оптике Френеля скорость волны могла изменяться в разных средах, но зависимости скорости от длины волны в одной среде не получалось. Пуассон даже после описанных в ч. 1 опытов сомневался в правильности теории Френеля. Его главное возражение как раз было связано с проблемой дисперсии. В ответе Пуассону Френель указал на молекулярную структуру вещества как на возможный источник дисперсии. К сожалению, ранняя смерть не позволила Френелю развить эту идею, но ее подхватил Коши.