Единые теории и струны
Тому, кто утверждает множественность (сущего), при-
ходится впадать в противоречия.
Зенон из Элеи (V в. до н. э.)
Последние четыре года были временем развития необычайно смелых идей в теории элементарных частиц. Казалось, вот-вот будет создана теория, объясняющая, из чего и как построен наш мир. Эти надежды пока не оправдались, но выполненная физиками-теоретиками работа открыла совершенно новые перспективы, и возможно, что на пороге нового тысячелетия какая-то черновая, предварительная теория будет создана. Весьма вероятно, что в этой теории важную роль будут играть солитоны.
Чтобы хотя бы кратко объяснить новые идеи теоретиков, попытаемся в очень сжатом (и заведомо неполном и неточном) виде описать, что сегодня известно о частицах и их взаимодействиях. Для Ньютона мир состоял из частиц, между которыми действовали силы тяготения. Этот мир был очень простым и упорядоченным, до совершенства его довел Лаплас в своей «Системе мира». Мир Максвелла намного сложнее. Во-первых, в систему мира вторгся хаос (вспомним максвелловское распределение скоростей молекул в газе). Но главное все же в том, что появилось электромагнитное поле. Колоссальное достижение Максвелла, объединившего в одной стройной системе электрические и магнитные взаимодействия, привело его к большим затруднениям при попытке понять природу электрических зарядов. Уравнения оказались совершенно симметричными относительно электрического и магнитного полей, но несимметричными относительно источников этих полей. Можно было бы попытаться ввести магнитные заряды, но Максвелл, подобно Ньютону, не был склонен к «измышлению гипотез», которые нельзя проверить на опыте. Кроме того, ему не нравилась идея о точечных зарядах.
Вернул частицы в теорию Г. А. Лоренц в своей «Теории электронов». Лоренцеву варианту теории электромагнитных явлений была суждена долгая жизнь. Теория электронов привела к созданию теории относительности. Ее применение к атомам породило квантовую механику, а впоследствии и квантовую электродинамику (в которой квантованию подвергались не только уровни энергии атомов, но и само электромагнитное поле). Даже квантование электронного поля (электроны и позитроны — кванты этого поля) не потребовало принципиальных изменений в картине мира Максвелла—Лоренца. Атомы состоят из ядер и электронов, связанных электромагнитными взаимодействиями. Силы, связывающие атомы в молекулы, также удалось объяснить в рамках квантовой механики.
Правда, атомные ядра оказались более сложными объектами, чем точечные, бесструктурные (элементарные) электроны, но постепенно выяснилось, что они состоят из протонов и нейтронов, которые также можно считать элементарными. Эта простая и стройная картина осложнялась тем обстоятельством, что электромагнитные силы не могли связать нейтроны и протоны в ядрах. Все попытки найти объяснение ядерных сил, «не измышляя» гипотез, неизменно терпели неудачу, и в 1935 г. молодой японский физик Хидеки Юкава сделал смелый шаг — он предположил, что существует переносчик ядерного взаимодействия, который он называл мезоном. Мезон был открыт на опыте лишь в 1947 г., но стройная концепция Юкавы, объяснявшая важнейшие факты физики атомного ядра, быстро завоевала признание. Появилось новое, ядерное взаимодействие, в сто-тысячу раз более сильное, чем электромагнитное и действующее на очень малых расстояниях, порядка 10-13 см. (Радиус действия сил, переносимых частицей с массой m, равен комптоновской длине волны
В 1934 г. Э. Ферми ввел в теорию еще одно взаимодействие, ответственное за радиоактивный распад нейтрона. Оно намного слабее электромагнитного и его радиус действия меньше 10-15 см. Первоначально это взаимодействие мыслилось как «контактное», с нулевым радиусом действия. Постепенно, однако, выяснилось, что при нулевом радиусе действия в теории неизбежно возникают внутренние противоречия и теоретики начали размышлять о возможных переносчиках слабого взаимодействия — «слабых» мезонах с большой массой, определяющей малый радиус действия слабых сил. Тем временем количество элементарных частиц, открытых на ускорителях, быстро возрастало. Увеличивалось и число разнообразных процессов с их участием. Однако во всех процессах просматривались важные закономерности.
Все процессы удавалось разделить на три группы: сильные, слабые и электромагнитные. Существенное различие между ними проявлялось не только в силе и радиусе взаимодействия, но и в том, что электромагнитные и слабые взаимодействия оказались «универсальными» в том смысле, что между различными процессами взаимодействий и взаимных превращений частиц удавалось находить простые соотношении (симметрии). Между сильными процессами также существовали некоторые соотношения симметрии, но они, как правило, были разрушены до такой степени, что об универсальности не было и речи. Возникла таким образом, гипотеза, что слабое взаимодействие устроено подобно электромагнитному, но только «слабые фотоны» — их назвали W-мезонами (W — от англ. weak, т. е. слабый) — весьма массивны (чтобы объяснить короткодействие слабых сил) и электрически заряжены. Позднее для объяснения универсальности пришлось добавить и нейтральный «слабый фотон», но это многим не нравилось, так как для объяснения наблюдаемых данных можно было обойтись заряженными W-мезонами. Несмотря на некоторые теоретические трудности таких теорий слабого взаимодействия, они получили довольно широкое признание.
Сложнее обстояло дело с сильными взаимодействиями. Их также пытались устроить наподобие электромагнитных взаимодействий, но с «сильными фотонами» (массивными и заряженными), однако это не привело к успеху до тех пор, пока М. Гелл-Манн и Г. Цвейг не изобрели кварки. Слово «изобрели» по отношению к кваркам вполне уместно, так как они не наблюдались на опыте, и существуют весьма серьезные основания думать, что они вообще ненаблюдаемы, никогда не появляются в свободном состоянии. Сначала думали, что кварки просто настолько массивны, что их нельзя получить на современных ускорителях. Позднее, однако, была предложена теория сильного взаимодействия, весьма похожая на электродинамику, но более сложная, в которой силы, связывающие кварки, при их удалении друг от друга настолько быстро нарастают, что кварки никогда не могут разлететься. В этой теории кварки и мезоны переносящие взаимодействие (их называют глюонами, от английского слова glue, т. е. клей), обладают неким новым зарядом, который назвали «цветом» (в связи с тем, что этот заряд может принимать три различных значения). Глюоны, подобно фотонам, не имеют массы, но сильно взаимодействуют между собой. По этой причине описывающие их уравнения нелинейны, это — уже упоминавшиеся уравнения Янга—Миллса. Теория кварков и глюонов называется квантовой хромодинамикой (КХД). Строго говоря, невозможность наблюдения кварков и глюонов пока не доказана, но весьма правдоподобна, мы обсудим это чуть позже.
Из-за того что «слабые» мезоны массивны, слабое взаимодействие казалось не очень похожим на электромагнитное. Тем не менее С. Вайнбергу, Ш. Глэшоу и А. Саламу удалось объединить его с электромагнитным с помощью все той же теории Янга—Миллса. Теория объединенного электромагнитно-слабого взаимодействия блестяще подтвердилась — в экспериментах на ускорителях были открыты заряженные и нейтральные «слабые фотоны». Заряженные называют W-бозонами, а нейтральные — это Z-бозон и фотон (термин «бозон» напоминает, что эти частицы не состоят из кварков, мезонами обычно теперь называют связанные состояния кварков и антикварков). В этой теории естественно объясняется интенсивность, радиус действия и другие свойства слабого взаимодействия. При этом на малых расстояниях, меньших комптоновской длины волны W- и Z-бозонов,
Естественно возникла мысль, что на еще меньших расстояниях возможно объединение всех трех взаимодействий. Оказалось, однако, что эти расстояния не просто малы, а фантастически малы, меньше
Некоторые предсказания ТВО оправдались; ясно, что теоретическая мысль движется в правильном направлении. Однако в ТВО есть много внутренних проблем, а главное, совершенно в стороне осталось гравитационное взаимодействие, без которого система мира не может быть полной. Во всех описанных теориях, объединенных в ТВО, вещество существует в виде фермионов (кварки, лептоны), а взаимодействие переносится бозонами Янга—Миллса (глюоны, W- и Z-бозоны). Теория же гравитации устроена совершенно по-другому, так как переносчики гравитационного взаимодействия не похожи на бозоны Янга—Миллса (понять это можно, вспомнив, что не существует гравитационного заряда, а значит, и столь любимой фантастами антигравитации). На первый взгляд, никакой возможности включить в единую схему гравитацию не видно. Однако теоретики ХХ в. не менее изобретательны, чем их великие предшественники. Возможный выход из, по-видимому, без выходной ситуации нашелся.
Еще в начале этого столетия знакомый нам Дж. Дж. Томсон пытался построить довольно необычную модель взаимодействия электронов. По его мысли, между движущимися элементарными зарядами вытягивается нить, внутри которой сосредоточено электрическое и магнитное поле. Вне этой нити электромагнитное поле равно нулю. Нить может колебаться и вытягиваться, энергия передается колебаниями нити. Он и его последователи безуспешно пытались найти соответствующие решения уравнений Максвелла. Сегодня ясно, почему это не удалось. В сущности, была сделана попытка получить абрикосовский вихрь в вакууме. Но для образования такого вихря «вакуум» должен обладать весьма сложными свойствами, он должен быть похож на сверхпроводник второго рода для электрических и магнитных зарядов.
Идеи Томсона были, естественно, забыты. Возродились они лишь лет двадцать назад в связи с попытками объяснить устройство мезонов из кварков и загадочный факт их «невылетания» из мезонов (приношу извинения за столь неблагозвучный термин, но перевод общепринятого английского термина «confinement» вызывает слишком неприятные ассоциации). По современным представлениям между квapками протягивается довольно тонкая трубка (диаметр ее
Представим теперь себе, что трубка очень тонкая и что она при движении кварков может только растягиваться и испытывать поперечные колебания (подобно фортепианной струне). Конечно, это весьма сильное предположение, которое очень трудно, если вообще возможно, обосновать. Например, вовсе не очевидно, что по поверхности трубки не будут распространяться волны, похожие на пульсирующие движения удава, заглатывающего кролика. Короче, вряд ли кто-нибудь сегодня смог бы серьезно обосновать представление о струне, связывающей кварки, исходя из точных уравнений квантовой хромодинамики. Тем не менее, если все же принять такую идею, из нее можно вывести интересные следствия. В частности, становится понятной удивительно простая структура спектра масс многочисленных мезонов (линейная зависимость квадрата массы семейств мезонов с одинаковыми квантовыми числами от их спинов). На языке струны можно наглядно представить и взаимные превращения (распады) мезонов. При растягивании струна может разорваться, в результате чего образуются две (или более) новые струны с кварками на концах. Эта простая картинка позволяет понять некоторые закономерности распадов мезонов. К сожалению, столь же простого описания барионов, состоящих из трех кварков (протон, нейтрон и другие), струнная модель не дает. Хотя представление о струне, связывающей кварки, оказалось полезным для понимания физики сильных взаимодействий, оно в лучшем случае является лишь очень грубым приближением. Для точного и полного описания мира сильно взаимодействующих частиц (адронов) необходимо пользоваться КХД.
Кроме того, в процессе работы теоретиков над струнами выяснилось еще одно обстоятельство, которое напрочь закрывало возможность их применения к реальному миру адронов. Дело в том, что адронная струна должна быть «релятивистской» (удовлетворять требованиям специальной теории относительности) и «квантовой» (описываться на языке квантовой механики). Оказалось, что эти требования невозможно совместить в нашем обычном четырехмерном пространстве-времени. Внутренне непротиворечивая теория возможна лишь в 26-мерном пространстве-времени! Правда, изобретательные молодые теоретики Джон Шварц, Андре Неве и Пьер Рамон придумали более хитрую струну, существующую в 10-мерном пространстве-времени. В отличие от обычной струны, которую называют бозонной (или струной Намбу—Гото), по струне Неве—Шварца—Рамона распределены некие элементарные «магнитики» (вспомните нашу простую резинку со скрепками), которые «съедают» 16 лишних измерений, но большего достичь не удалось. Развитие теории этой струны привело к очень интересному открытию симметрий между бозонами и фермионами (эта совершенно новая и необычная симметрия называется суперсимметрией; хотя экспериментаторам пока не удалось обнаружить ее следов в реальном мире, многие теоретики успешно применяют ее в чисто теоретических исследованиях), но адронную струну это не спасало. По этим причинам к середине 70-х годов интерес физиков к струнной модели адронов ослабел, и лишь немногие энтузиасты продолжали размышлять о струнах, этих новых для физики, загадочных объектах.
Эти размышления вскоре вывели теоретиков на совершенно иные взгляды на струны. Одним из следствий теории струны было предсказание безмассовых частиц со спином 2. Это состояние возникает для струны, замкнувшейся в колечко. Образование таких замкнутых струн в квантовой теории совершенно неизбежно, а среди адронов частиц с нулевой массой и спином 2, безусловно, нет. Что же делать с этим предсказанием? Предоставим слово Джону Шварцу.
«В 1974—1975 гг. я работал с Джоэлем Шерком в Калтехе *). Мы были поражены тем фактом, что струнные теории никак не поддавались нашим многочисленным попыткам сдвинуть массы к другим значениям. В частности, в секторе замкнутых струн ...неизбежно появлялось безмассовое состояние со спином 2. В какой-то момент нам пришло в голову (не помню, кто сказал это первый — Джоэль или я), что, возможно, это состояние есть просто гравитон. Это невинное замечание привело к глубоким последствиям: это означало, что мы обсуждаем не адроны; это означало, что естественный масштаб длины для струн равен
*) Знаменитый Калифорнийский Технологический Институт в г. Пасадина, США; в нем работал Ричард Фейнман, и продолжает работать Мюррей Гелл-Манн. — Примеч. авт.
Дадим необходимые пояснения. Уже давно было известно, что квантами гравитационного поля являются безмассовые частицы со спином 2. Известно было также, что на известных путях построить последовательную теорию квантовой гравитации никому не удалось и вряд ли удастся. Не видно было и путей к объединению гравитации с электрослабыми и сильными взаимодействиями, в которых переносчики взаимодействия, бозоны Янга—Миллса, имеют спин равный 1. Наконец, несколько слов об идеях Калуцы—Клейна.
В 1919 г. немецкий физик-теоретик Теодор Калуца (1885—1954), работавший в Кенигсбергском университете, сделал первую попытку объединения гравитационных и электромагнитных взаимодействий. Он применил идеи общей теории относительности к расширенному, пятимерному миру, включив электромагнитные потенциалы теории Максвелла в число гравитационных потенциалов пятимерного мира. Отличие электромагнитных потенциалов от гравитационных возникало благодаря предположению о независимости физических величин от пятой координаты (так что пятая координата — это в чистом виде улыбка Чеширского Кота). Это обстоятельство, конечно, делало теорию Калуцы довольно формальной и непривлекательной для физиков. Тем не менее она вызвала достаточно большой интерес.
Оскар Клейн (1894—1977) попытался уточнить теорию Калуцы и разработать какие-то физические следствия (1926 г.). В том же 1926 г. были опубликованы еще две работы, связанные с идеями Калуцы. Ленинградский физик Георгий Александрович Мандель независимо от Калуцы также пришел к идее пятимерного обобщения теории тяготения и разработал пятимерную теорию значительно дальше Калуцы. Опираясь на работу Манделя, Владимир Александрович Фок (1898—1974) проделал примерно такую же работу, как и Клейн. Было бы поэтому справедливо называть теорию Калуцы—Клейна теорией Калуцы—Манделя—Клейна—Фока или же просто теорией Калуцы.
К сожалению, во всех упомянутых прекрасных работах физический смысл пятой координаты так и не прояснился; она оставалась чисто формальной «вещью в себе». Современное понимание идей Калуцы восходит к работе А. Эйнштейна и П. Бергмана «Обобщение теории электричества Калуцы» (1938 г.), которые предположили, что пятое измерение «свернуто в колечко» очень малого радиуса. Иными словами, если бы мы попробовали пойти вдоль пятого направления, то очень быстро вернулись бы в исходную точку (чтобы понять это нагляднее, представьте себе поверхность цилиндра с координатной сеткой из прямых параллельных его оси и перпендикулярных им окружностей; примерно о таких колечках идет речь). В современных теориях рассматривают большее число свернутых измерений, это позволяет описать не только электромагнитное поле, но и поля Янга-Миллса. Ясно, однако, что радиус этих колечек должен быть не просто малым, а фантастически, невообразимо малым. Наиболее разумная оценка этого радиуса
Из всех имеющихся на сегодня идей лишь идея струны кажется способной в конце концов привести к построению к объединенной, общей теории всех взаимодействий, естественно включающей в себя и гравитационное взаимодействие. За последние четыре года усилиями многих теоретиков удалось существенно продвинуться в этом направлении. Из многих полученных ими замечательных результатов, выделим лишь один, имеющий прямое отношение к теме этой книги. В современной теории струн реализовалась мечта лорда Кельвина о чисто топологическом истолковании зарядов элементарных частиц (для него — «атомов»). Если лишние измерения замкнуты, то струна может несколько раз обвиваться «вокруг них» (подобно нитке на катушке). Оказывается, что разные способы такого «обвивания» соответствуют различным внутренним квантовым числам частиц. С этой точки зрения частицы (кварки, лептоны и т. д.) — это просто разные состояния замкнутой струны, как это и представлял себе лорд Кельвин. На этом мы, пожалуй, и остановимся. Теория струн вещь не законченная, на мой взгляд, работа над ней только начинается. Впереди много проблем, наберемся терпения и подождем лет десять-пятнадцать.
Попробуем схематически изобразить современное представление о структуре мира. На рис. 7.20 схематически указано, как, параллельно с объединением взаимодействий, происходило изменение представлений о фундаментальных частицах, составляющих вещество (от «корпускул» до кварков и лептонов).
Дуализм «частица-взаимодействие» — один из лейтмотивов физики, и в разные периоды на первый план выдвигалось либо одно либо другое понятие. Например, для Декарта и Максвелла главным в картине мира было взаимодействие, а для Ньютона и Лоренца — частицы. Впрочем, эти глубокие мыслители были весьма осторожны и сами не проводили резкой грани между частицами и взаимодействиями. Существовало также и стремление к единой теории частиц и взаимодействий (от Руджера Бошковича до Эйнштейна). По мере того как открывались переносчики взаимодействий, грань между частицами и взаимодействиями становилась все более зыбкой. Сейчас, после того как суперсимметрия объединяет в единые мультиплеты фермионы (традиционные частицы) и бозоны (традиционные агенты взаимодействий), мы более подготовлены к мысли, что по-настоящему фундаментальная теория устройства Вселенной должна быть единой теорией всех взаимодействий и всех частиц, из которых построено вещество. По-видимому, понятия частиц и взаимодействий как отдельных структурных элементов реальности потеряют смысл и должны быть заменены новыми структурными единицами, порождающими знакомые нам частицы и взаимодействия лишь в некотором приближении. Возможно, что такой структурной единицей окажется струна, а живущие на ней солитоны порождают многообразие известных и пока неизвестных нам частиц, из которых в конечном счете составлено невероятное многообразие удивительного мира, в котором мы живем.
* * *
На этом кончается наше путешествие. В таких случаях обычно принято писать заключение, делать выводы, подводить итоги. В книге о солитоне делать это, по-моему, рано. Солитон еще слишком молод и открыл нам лишь малую часть своих дарований. Да и может ли быть какой-нибудь конец у истории о бесконечно разнообразном детище бесконечной и изменчивой Природы... Продолжение?.. Да, продолжение истории обязательно будет! Только для этого понадобится работа молодого читателя этой книги, будущего создателя дерзких новых идей.