Большой адронный коллайдер

We use cookies. Read the Privacy and Cookie Policy

И все же устройством, которое окончательно решит многие из упомянутых вопросов, является Большой адронный коллайдер, строительство которого близится к завершению возле Женевы в Швейцарии в знаменитой ядерной лаборатории ЦЕРН (Европейской организации по ядерным исследованиям)[51]. В отличие от предыдущих экспериментов по обнаружению незнакомых форм материи, в естественном виде существующей в мире, Большой адронный коллайдер, возможно, будет обладать достаточной энергией, чтобы создать эти формы материи прямо в лаборатории. При помощи Большого адронного коллайдера можно будет исследовать малые расстояния до 10–19 м, что в 10 000 раз меньше протона, а также создавать температуры, невиданные со времен Большого взрыва. «Физики уверены, что у природы припасены новые фокусы, которые могут обнаружиться в ходе этих столкновений, – возможно, это будет экзотическая частица, известная под названием бозон Хиггса[52], возможно, доказательство такого чудесного явления, как суперсимметрия, а возможно, обнаружится что-либо неожиданное и поставит с ног на голову всю физику»{188}, – пишет Крис Ллевеллин Смит, бывший генеральный директор ЦЕРН, а теперь президент Университетского колледжа в Лондоне. Уже сейчас оборудованием ЦЕРН пользуются около 7000 специалистов, а это более половины всех физиков планеты, экспериментирующих с частицами. И многие из них будут самым непосредственным образом участвовать в экспериментах, проводимых при помощи Большого адронного коллайдера.

Большой адронный коллайдер представляет собой мощную конструкцию в виде кольца диаметром 27 км. Размеры этого кольца достаточно велики, чтобы окружить многие города мира. Туннель коллайдера такой длинный, что он фактически пересекает границу между Францией и Швейцарией. Большой адронный коллайдер представляет собой настолько дорогостоящее устройство, что при его строительстве потребовались совместные усилия нескольких европейских стран. После запуска коллайдера в 2007 году мощные магниты, расположенные вдоль всего кругового туннеля, заставят пучок протонов циркулировать со все возрастающей энергией до тех пор, пока она не приблизится к 14 трлн эВ.

По мере прохождения частиц по кругу в туннель подается энергия, увеличивая скорость протонов. Когда пучок в конце концов попадает в цель, происходит колоссальный выброс излучения[53]. Следы, образовавшиеся в результате этого столкновения, фотографируют при помощи группы детекторов с целью обнаружения новых экзотических субатомных частиц.

Большой адронный коллайдер – это поистине гигантское устройство. В то время как детекторы LIGO и LISA бьют все рекорды в плане чувствительности, Большой адронный коллайдер уникален уже благодаря своей колоссальной мощности. Его магниты, искривляющие пучок протонов в изящную дугу, генерируют поле в 8,3 теслы, которое в 160 000 раз сильнее магнитного поля Земли. Для создания такого чудовищного по силе поля физики пропускают ток силой 12 000 А по ряду витков, охлажденных до температуры в –271 °С, при которой витки теряют сопротивление и становятся сверхпроводниками. В целом на Большом адронном коллайдере установлено 1232 магнита, каждый из которых имеет 15 м в длину. Таким образом, магниты расположены вдоль 85 % всей окружности коллайдера.

В туннеле протоны к моменту удара по цели ускоряются до скорости, равной 99,999999 % скорости света. Цели находятся в четырех местах по всей длине туннеля. Таким образом, каждую секунду происходят миллиарды столкновений. Там же расположены гигантские детекторы (каждый из которых размером с семиэтажный дом), задачей которых является анализ следов столкновения и обнаружение неуловимых субатомных частиц.

Как было ранее замечено Смитом, в задачи Большого адронного коллайдера входит обнаружение неуловимого бозона Хиггса, представляющего собой последний элемент Стандартной модели, который до сих пор не удавалось обнаружить. Эта задача имеет большое значение, поскольку эта частица отвечает за спонтанное нарушение симметрии в теориях частиц и дает начало массам квантового мира. По предварительным оценкам, масса бозона Хиггса может быть 115–200 млрд эВ[54] (для сравнения: масса протона около 1 млрд эВ){189}. (Теватрон, устройство гораздо меньших размеров, размещенное в Лаборатории Ферми на окраине Чикаго, станет, возможно, первым ускорителем, при помощи которого удастся заполучить неуловимый бозон Хиггса, при условии что масса этой частицы не слишком велика. В принципе, Теватрон может произвести до 10 000 бозонов Хиггса, если все будет идти, как запланировано. Однако энергия генерирования частиц Большого адронного коллайдера будет в семь раз больше. При 14 трлн эВ Большой адронный коллайдер вполне сможет стать «фабрикой» бозонов Хиггса, миллионы которых будут создаваться при столкновениях протонов.)

В задачи Большого адронного коллайдера входит также создание условий, невиданных со времен самого Большого взрыва. В частности, физики полагают, что изначально Большой взрыв состоял из хаотичного скопления чрезвычайно горячих кварков и глюонов, называемого кварк-глюонной плазмой. Большой адронный коллайдер сможет произвести такую кварк-глюонную плазму, которая преобладала во Вселенной в первые 10 мкс ее существования. В Большом адронном коллайдере можно будет столкнуть ядра свинца при энергии 1,1 трлн эВ. В ходе такого мощного столкновения могут «расплавиться» четыре сотни протонов и нейтронов, которые высвободят кварки в эту горячую плазму[55]. Таким образом, космология постепенно сможет стать в меньшей степени наукой, основанной на астрономических наблюдениях, и точные эксперименты на кварк-глюонной плазме будут ставиться прямо в лабораториях.

Можно надеяться, что при помощи Большого адронного коллайдера удастся обнаружить черные мини-дыры среди остатков, образовавшихся в результате столкновения протонов при фантастически высоких энергиях, как уже было упомянуто в главе 7[56]. Обычно образование квантовых черных дыр должно происходить при энергии Планка, что в квадриллион раз превышает энергию Большого адронного коллайдера. Но если в миллиметре от нашей Вселенной существует параллельная вселенная, то энергия, при которой возможно измерение квантовых гравитационных эффектов, снижается, благодаря чему создание черных мини-дыр оказывается в пределах возможностей Большого адронного коллайдера.

И наконец, ученые возлагают надежды на то, что при помощи Большого адронного коллайдера удастся найти подтверждение суперсимметрии, что стало бы историческим прорывом в физике частиц. Считается, что эти суперпартнеры являются партнерами обычных частиц, которые мы можем наблюдать в природе. Хотя струнная теория и суперсимметрия и предсказывают, что у каждой субатомной частицы есть «близнец» с отличающимся спином, суперсимметрия никогда не наблюдалась в природе, вероятно, потому, что наши приборы не обладают достаточной мощностью для ее обнаружения.

Подтверждение существования суперчастиц помогло бы дать ответ на два наболевших вопроса. Во-первых, верна ли струнная теория? Несмотря на то что обнаружить струны прямым путем чрезвычайно сложно, может оказаться возможным обнаружить нижние октавы или резонансы струнной теории. Если будут открыты суперчастицы, это станет большим сдвигом в струнной теории, обеспечивая ее экспериментальное подтверждение (хотя все же это не будет прямым доказательством ее истинности).

Во-вторых, это предоставило бы наиболее вероятного претендента на роль темной материи. Если темная материя состоит из субатомных частиц, то они должны обладать стабильностью и нейтральным зарядом (иначе они были бы видимы), а также между ними должно быть гравитационное взаимодействие. Среди частиц, предсказываемых струнной теорией, встречаются и обладающие этими тремя качествами.

Когда будет запущен Большой адронный коллайдер, он станет самым мощным ускорителем частиц. И все же для большинства физиков это не предел мечтаний. В 1980-е годы президент Рональд Рейган одобрил проект постройки Сверхпроводящего суперколлайдера (SSC) – гигантской конструкции, достигающей 80 км в окружности. Строительство этого ускорителя частиц планировалось возле Далласа (штат Техас). По сравнению с Суперколлайдером Большой адронный коллайдер показался бы просто крошкой. В то время как Большой адронный коллайдер позволяет сталкивать частицы с энергией 14 трлн эВ, по проекту Суперколлайдер должен был обеспечить столкновения частиц с энергией 40 трлн эВ. Первоначально проект получил одобрение, но в последние дни слушаний Конгресс Соединенных Штатов внезапно отклонил его. Это стало тяжелым ударом по физике высоких энергий и задержало развитие этой области на целое поколение.

Поначалу предметом спора являлись стоимость проекта, составляющая 11 млрд долларов, и научные приоритеты. Мнения представителей научного сообщества по поводу Сверхпроводящего суперколлайдера разделились: некоторые физики заявляли, что проект выкачает средства, которые могли бы пойти на их собственные исследования. Спор разгорелся настолько, что даже The New York Times опубликовала критическую редакционную статью, где говорилось об опасностях «большой науки», которая может задушить «малую науку». (Эти аргументы беспочвенны, поскольку средства на строительство Сверхпроводящего суперколлайдера должны были поступать из других источников, а не из бюджета «малой науки». Реальным соперником проекта была космическая станция, которая многими учеными рассматривалась поистине как пустая трата денег.)

Но, оглядываясь назад, можно сказать, что суть спора сводилась к умению говорить с широкой общественностью на доступном языке. В некотором смысле мир физики привык к тому, что строительство чудовищных ускорителей частиц получало одобрение со стороны Конгресса, поскольку русские строили свои ускорители. В сущности, русские строили свой ускоритель УНК (Ускорительно-накопительное кольцо. – Прим. пер.), соревнуясь со Сверхпроводящим суперколлайдером[57]. На карту были поставлены честь и престиж нации. Но Советский Союз распался, строительство было остановлено, и постепенно ветер перестал надувать паруса программы постройки Сверхпроводящего суперколлайдера{190}.