Является ли Вселенная компьютерной программой?

We use cookies. Read the Privacy and Cookie Policy

Как мы уже наблюдали, Джон Уилер считал, что всю физическую реальность можно свести к чистой информации. Бекенштейн продвигает идею информации в черной дыре еще на один шаг вперед, задавая вопрос, который заводит нас в неизведанные земли: является ли вся Вселенная компьютерной программой? Не являемся ли мы всего лишь битами на космическом компакт-диске?

Вопрос о том, живем ли мы в компьютерной программе, получил блестящее воплощение на киноэкране в фильме «Матрица» (The Matrix), где пришельцы свели всю физическую реальность к компьютерной программе. Миллиарды людей считают, что они живут повседневной жизнью, понятия не имея о том, что все это лишь сгенерированная компьютером фантазия, в то время как их настоящие тела спят в коконах, а пришельцы используют их как источники энергии.

В этом фильме возможно запускать компьютерные программы, которые могут создавать искусственные мини-реальности. Если вы хотите стать мастером кунг-фу или пилотом вертолета, то просто вставляете компакт-диск в компьютер, программа подается в мозг, и – presto! – вы мгновенно усваиваете эти сложные навыки. Когда запускается компакт-диск, создается целая новая субреальность. Но это вызывает интригующий вопрос: можно ли поместить на диск всю реальность? Компьютерная мощность, необходимая, чтобы симулировать реальность для миллиардов спящих людей, поистине ошеломляет. Но все же возникает теоретический вопрос: может ли вся Вселенная быть оцифрована в завершенную компьютерную программу?

Этот вопрос восходит к законам механики Ньютона, имея широкие перспективы практического применения в торговле и в нашей жизни. Как известно, Марк Твен говорил: «Все жалуются на погоду, но никто с ней ничего не может поделать». Современная цивилизация не может изменить ход одной-единственной грозы. Физики задались вопросом попроще: можем ли мы предсказывать погоду? Можно ли создать компьютерную программу, которая предскажет ход формирования сложных типов погоды на Земле? Это найдет очень широкое практическое применение для всех заинтересованных в погоде – от фермеров, которые хотят знать, когда сеять и когда собирать урожай, до метеорологов, которые хотят знать ход глобального потепления в этом веке.

В принципе, компьютеры могут использовать законы механики Ньютона для вычисления пути молекул, создающих погоду. Это вычисление может быть выполнено практически с любой желаемой точностью. Но на деле компьютерные программы чрезвычайно грубы и ненадежны в прогнозировании погоды более чем на несколько дней вперед или около того в лучшем случае. Для того чтобы составить прогноз погоды, понадобилось бы определить движение каждой молекулы воздуха, а эта задача – нечто, астрономически превосходящее возможности самого мощного компьютера, имеющегося в нашем распоряжении. Кроме того, существует теория хаоса и «эффект бабочки», где даже малейшая вибрация, созданная крылом бабочки, может вызвать эффект ряби, который в ключевые моменты решительно изменит погоду на расстоянии в сотни миль.

Подводя итоги, математики заявляют, что самой маленькой моделью, способной в точности описать погоду, является сама погода. Вместо того чтобы заниматься микроанализом каждой молекулы, лучшее, что мы можем сделать, – это узнать прогноз погоды на завтра, а также проследить более масштабные погодные процессы и изменения (такие как парниковый эффект).

Итак, свести ньютонианский мир к компьютерной программе представляется чрезвычайно сложным, поскольку существует слишком много переменных и слишком много «бабочек». Но в квантовом мире происходят странные вещи.

Как мы видели, Бекенштейн показал, что общая сумма информационного содержимого черной дыры пропорциональна площади поверхности ее горизонта событий. Это чувствуется на уровне интуиции. Многие физики считают, что минимальным возможным расстоянием является длина Планка (10–33 см). При таком невероятно малом расстоянии пространство-время уже не гладкое, оно становится похожим на пену, состоящую из крошечных пузырьков. Мы можем разделить всю сферическую поверхность горизонта событий на маленькие квадратики, каждый из которых будет размером с длину Планка. Если каждый из этих квадратиков несет в себе один бит информации, то, сложив все эти квадратики, мы приблизительно определим полное информационное содержимое данной черной дыры. Видимо, это указывает на то, что каждый из таких «квадратов Планка» является минимальной единицей информации. Если это верно, то тогда, как утверждает Бекенштейн, скорее всего, информация, а не теория поля является истинным языком физики. Он говорит так: «Теория поля с ее бесконечностью не может быть окончательным вариантом»{146}.

Еще со времен Майкла Фарадея в XIX веке вся физика формулировалась на языке полей, гладких и протяженных, которые измеряют силу магнетизма, электричества, гравитации и так далее в любой точке пространства-времени. Но теория поля основана на протяженных структурах, а не оцифрованных. Поле может иметь любое значение, в то время как оцифрованность уже сводит все к дискретным числам, состоящим из нулей и единиц. Это такое же различие, как между гладким пластом резины из теории Эйнштейна и мелкой проволочной сеткой. Резиновый пласт можно поделить на бесконечное количество точек, в то время как в проволочной сетке есть минимальное расстояние – длина ячейки.

Бекенштейн предполагает, что «конечная теория должна заниматься уже не полями и даже не пространством-временем, а скорее обменом информации между физическими процессами»{147}.

Если Вселенную можно оцифровать и свести к нулям и единицам, то каково же суммарное информационное содержимое Вселенной? По оценке Бекенштейна, черная дыра диаметром около сантиметра могла бы содержать 1066 бит информации. Раз объект размером в сантиметр может нести в себе так много информации, то, по оценке Бекенштейна, вся видимая Вселенная должна содержать намного большее ее количество – не меньше 10100 бит информации (которую в принципе можно сжать в сферу размером в одну десятую светового года в поперечнике. Такое колоссальное число – единица, за которой следует сто нулей, – носит название «гугол»).

Если эта картина верна, то мы имеем дело со странной ситуацией. Она может указывать на то, что в то время, как ньютонианский мир не может быть смоделирован при помощи компьютеров (или может быть смоделирован только системой столь же большой, как и он сам), в квантовом мире, возможно, саму Вселенную можно загнать на компакт-диск! Теоретически, если мы можем поместить 10100 бит информации на компакт-диск, то сможем наблюдать за тем, как любое событие нашей Вселенной разворачивается у нас в гостиной. В принципе, можно было бы организовать или перепрограммировать биты информации на этом компакт-диске таким образом, чтобы физическая реальность была иной. В каком-то смысле у человека появится богоподобная способность переписать весь сценарий.

(Бекенштейн также признает, что все информационное содержимое Вселенной может быть и намного большим. В сущности, наименьшим объемом, в котором может содержаться информация Вселенной, может оказаться объем самой Вселенной. Если это верно, то мы возвращаемся к тому, с чего начали: наименьшей системой, которая может служить моделью Вселенной, является сама Вселенная.)

Однако струнная теория предлагает несколько иную интерпретацию «наименьшего расстояния», а возможности оцифровать Вселенную и записать ее на диск. М-теория обладает Т-дуальностью. Вспомним о том, что греческий философ Зенон считал, что линию можно разделить на бесконечное количество точек без всякого ограничения. Сегодня такие квантовые физики, как Бекенштейн, считают, что наименьшим расстоянием может быть длина Планка – 10–33 см. При таком расстоянии материя пространства-времени становится пенистой и пузыристой. Но М-теория представляет эту картину в новом свете. Предположим, мы возьмем струнную теорию и свернем одно измерение в окружность с радиусом R. Затем возьмем еще одну струнную теорию и свернем одно измерение в окружность с радиусом 1/R. При сравнении этих двух довольно сильно отличающихся друг от друга теорий мы обнаружим, что они совершенно одинаковы.

Теперь предположим, что радиус R чрезвычайно мал, намного меньше длины Планка. Это означает, что физика при расстояниях, меньших длины Планка, идентична физике при расстояниях, превышающих длину Планка. При длине Планка пространство-время может стать комковатым и пенистым; однако физика при расстояниях, меньших длины Планка, и физика на очень больших расстояниях могут быть гладкими и, в сущности, являются идентичными.

Эта дуальность была впервые обнаружена в 1984 году моим коллегой Кейджи Киккавой и его учеником Масами Юмасаки из Университета Осаки. Хотя струнная теория наглядно показывает, что существует наименьшее расстояние – длина Планка, и физика не заканчивается внезапно при достижении длины 10–33 см. Новым светом, пролитым М-теорией на этот вопрос, является то, что физика при расстояниях, меньших длины Планка, эквивалентна физике при расстояниях, превышающих длину Планка.

Если интерпретация шиворот-навыворот верна, то это означает, что даже в пределах наименьшего расстояния в струнной теории может существовать целая вселенная. Иными словами, мы все еще можем использовать теорию поля с ее протяженными (неоцифрованными) структурами для описания Вселенной даже при расстояниях, намного меньших, чем длина Планка. Так что, возможно, Вселенная – это вовсе не компьютерная программа. В любом случае, поскольку проблема четко обозначена, все решит время.

(Эта Т-дуальность является подтверждением упоминавшегося мною ранее сценария Венециано о событиях до Большого взрыва. В этой модели черная дыра схлопывается до размеров длины Планка, а затем снова разлетается в Большом взрыве. Этот взрыв не является внезапным событием, он представляет собой плавную Т-дуальность между черной дырой размером меньше длины Планка и расширяющейся Вселенной, большей, чем длина Планка.)