Волны материи

We use cookies. Read the Privacy and Cookie Policy

Кажется, будто частица и волна — две совсем разные вещи. Одна локализована, а другая распределена в пространстве. Одна отскакивает от стен, а другая огибает углы. Одна вроде бы является крошечной частью материи, а другая представляется как рябь в пространстве. Что у них может быть общего?

Фотоны, как показал Эйнштейн, представляют собой гибрид волны и частицы. Как и частицы, фотоны переносят порции энергии и импульса, которые могут передавать при столкновениях. Как волны, они имеют узлы и пучности, которые могут образовывать полосатые изображения, называемые интерференционными картинами.

В 1924 году в своей докторской диссертации, основанной на расчетах, выполненных годом ранее, де Бройль творчески применил дуальное описание ко всей материи. Он предположил, что не только фотоны, но и все другие частицы обладают как корпускулярными, так и волновыми свойствами. В частности, электрону сопоставляется длина волны, равная постоянной Планка, деленной на его импульс.

Красота концепции де Бройля заключается в том, что она естественным образом приводит к боровским правилам квантования момента импульса (и к их обобщениям, которые называются правилами квантования Бора — Зоммерфельда). Это было ключом к описанию стабильных орбит электронов в атоме. Де Бройль представлял орбиту электрона в атоме чем-то наподобие вибрирующей гитарной струны, только закольцованной вокруг ядра. Также как натянутая струна может вибрировать в разных тональностях, с разным количеством узлов и пучностей, электронная волна в атоме может колебаться с различными длинами волн. Поскольку импульс в формуле де Бройля обратно пропорционален длине волны, а момент импульса — это импульс, умноженный на радиус, то формула приводит к правилу, в соответствии с которым момент импульса может принимать только дискретные значения. Таким образом, простые вычисления приводят к необходимым ограничениям на орбиты электронов, которые Бор не мог адекватно объяснить сам, но которые были критически важны для его теории.

В одной из своих статей по квантовой статистике одноатомных газов Эйнштейн обратился к идее де Бройля о волнах материи как к возможному объяснению, почему в газах при низких температурах атомы двигаются как бы в унисон, тем самым становясь более упорядоченной системой и уменьшая энтропию. Идея, что атомы, как и фотоны, могут вести себя подобно волнам, выстроила существенную связь между одноатомным газом Эйнштейна и фотонным газом Бозе, на модели которого Эйнштейн основывал свою теорию. Эйнштейн также хвалил де Бройля за инновационное решение проблемы квантования момента импульса, которая была слабым местом боровской модели.

Когда Шрёдингер внимательно прочел статью Эйнштейна и увидел ссылку на диссертацию де Бройля, он тут же захотел ознакомиться с ней. Забавно, но он, похоже, не понимал, что ее основные результаты уже опубликованы и доступны в библиотеке Университета Цюриха, прямо у него под носом. Вместо этого он написал в Париж и попросил выслать саму диссертацию. Увлечение Шопенгауэром и Спинозой подготовило его к поиску объединяющих принципов, поэтому Шрёдингер нашел идеи де Бройля об общих свойствах материи и света блестящими. Внезапно модель атома Бора — Зоммерфельда превратилась из ущербного аналога Солнечной системы в бьющееся сердце материи, пульсирующее в соответствии с природными закономерностями, которые определяли его свойства. 3 ноября 1925 года Шрёдингер написал Эйнштейну: «Несколько дней назад я с величайшим интересом прочел гениальную диссертацию Луи де Бройля, которую наконец-то раздобыл»{59}.

Вдохновленный Дебаем, работавшим тогда в ЕТН, Шрёдингер организовал семинар по волнам материи де Бройля, на котором было убедительно показано революционное значение этой идеи. В конце обсуждения Дебай предложил Шрёдингеру заняться вопросом, уравнению какого типа могут подчиняться подобные волны и как можно описать их эволюцию во времени и в пространстве. Может ли, по аналогии с излучением электромагнитных волн, которое описывается уравнениями Максвелла, существовать механизм испускания волн материи, который бы соответствовал физическим ограничениям той или иной ситуации? Например, как будут вести себя электроны, помещенные в электромагнитное поле, которое создается протонами в атомных ядрах? Как они будут вести себя за пределами атомов при движении в пустом пространстве?

Следующие несколько месяцев Шрёдингер лихорадочно пытался найти правильное уравнение, которое описывало бы волны материи и объясняло поведение электронов в атомах. Наибольшую проблему для него в то время представляло внутреннее свойство электронов, называемое спином. Впервые описанный в 1926 году двумя студентами Эренфеста, Сэмюэлом Гаудсмитом и Джорджем Уленбеком, спин представляет собой квантовое число, которое характеризует поведение частицы во внешнем магнитном поле. Спин «вверх» означает, что частицы выстраиваются в одном направлении с полем, а спин «вниз» означает, что они располагаются в противоположном направлении. Многие типы частиц, включая электроны, обладают полуцелым спином, например 1/2, или -1/2.

Частицы с полуцелым спином не подчиняются статистике Бозе — Эйнштейна, потому что две такие частицы не могут находиться в одном квантовом состоянии. Скорее, как это покажет Паули, электроны и другие частицы с полуцелым спином должны подчиняться принципу запрета, гласящему, что каждая частица должна занимать свое собственное квантовое состояние. Частицы этого типа, называемые фермионами, не могут сбиваться в кучу, как музыкальные фанаты возле сцены. Вместо этого у каждой частицы есть свое собственное место.

Термин фермион происходит от названия статистики Ферми — Дирака, правильно описывающей коллективное поведение частиц с полуцелым спином. Названная в честь итальянского физика Энрико Ферми и английского физика Поля Дирака, каждый из которых внес свой вклад в теорию, она описывала распределение частиц по состояниям иначе, чем статистика Бозе — Эйнштейна. Впоследствии Дирак вывел правильное релятивистское уравнение, описывающее поведение фермионов, названное уравнением Дирака. Это потребовало нового типа обозначений с использованием комплексных чисел.

Шрёдингер начал свои расчеты, не зная ничего из этого, и вскоре разработал уравнение для волн материи, в котором использовались положения специальной теории относительности. Это было очень важное уравнение, которое позже переоткрыли шведский физик Оскар Клейн и немецкий физик Уолтер Гордон и которое было названо уравнением КлейнаГордона[9]. Беда была в том, что оно не вполне применимо к электронам и другим фермионам из-за их полуцелого спина. На самом деле оно отлично работает для описания бесспиновых бозонов, но Шрёдингер пытался описать с его помощью электроны, являющиеся фермионами, а не бозонами. К его великому разочарованию, когда он попытался смоделировать атом Бора — Зоммерфельда, предсказания модели оказались ошибочными.

После серии бесплодных попыток Шрёдингер решил, что ему нужен перерыв. На носу были рождественские каникулы, и Шрёдингер использовал их, чтобы выбраться из города и более глубоко поразмыслить о волнах материи. Он сообщил Энни, что отправляется отдыхать в живописную альпийскую деревушку Ароза. Шрёдингер уже бывал там раньше, когда восстанавливался после легочной инфекции. Тем временем он написал письмо одной своей бывшей подружке из Вены (чье имя неизвестно, поскольку его дневник за тот год утерян) и пригласил ее присоединиться к нему. Энни осталась в Цюрихе.