§ 5. Молекулярная диффузия
Перейдем к другой задаче, для которой нам придется несколько изменить метод анализа, — к задаче о диффузии. Предположим, что мы взяли ящик, заполненный газом, находящимся в тепловом равновесии, а потом в любое место внутри ящика вспрыснули небольшое количество другого газа. Назовем первоначальный газ газом «фона», а новый газ — «особым» газом. Особый газ начинает распространяться по всему ящику, но распространение это замедляется наличием молекул фона. Явление такого замедленного распространения называется диффузией. Диффузия в основном определяется столкновениями молекул особого газа с молекулами фона. После многих столкновений особые молекулы более или менее равномерно распределятся по всему ящику. Важно не спутать диффузию газа с переносом больших количеств вещества в результате конвекционных токов. Обычно смешение двух газов происходит именно в результате комбинации конвекции и диффузии. Сейчас нас интересует только такое перемешивание, которое не сопровождается «порывами ветра». Газ распространяется только благодаря молекулярному движению, т. е. происходит диффузия. Давайте выясним, быстро ли происходит диффузия.
Итак, мы приступаем к вычислению общего потока молекул особого газа, порождаемого молекулярным движением. Общий поток не равен нулю только тогда, когда распределение молекул отличается от равновесного, иначе усреднение молекулярного движения сводит общий поток к нулю. Рассмотрим сначала поток в направлении оси х. Чтобы определить, чему этот поток равен, мы должны вообразить площадку, перпендикулярную к оси, и подсчитать число молекул, пересекающих эту площадку. Чтобы определить общий поток, мы должны считать положительными те молекулы, которые движутся в направлении положительных x, и вычесть из этого числа те молекулы, которые движутся в противоположном направлении. Как мы неоднократно убеждались, число молекул, пересекающих площадку в течение времени ?T, равно числу молекул, находящихся к началу интервала ?T внутри объема, заключенного между нашей площадкой и площадкой, расположенной от нее на расстоянии v?T. (Заметим, что здесь v — настоящая скорость молекулы, а отнюдь не скорость дрейфа.)
Мы упростим наши выкладки, если возьмем площадку единичной площади. Тогда число особых молекул, пересекающих площадку слева направо (справа от площадки лежат положительные x-направления), равно n-v?T, где n- — число особых молекул в единичном объеме слева от площадки (с точностью до множителя ~1/6, но мы такими множителями пренебрежем!). Аналогично, число особых молекул, движущихся справа налево, равно n+v?T, где n+ — плотность особых молекул справа от площадки. Если мы обозначим молекулярный поток буквой J, под которой мы будем понимать общий поток молекул через единичную площадку за единицу времени, то получим
или
А что понимать под n- и n+? Когда мы говорим «плотность слева от площадки», то как далеко налево? Мы должны измерить плотность в том месте, откуда молекула отправляется в свой «свободный полет», потому что число стартующих молекул определяется числом молекул, находящихся в этом месте. Таким образом, n- — это плотность молекул на расстоянии длины свободного пробега l слева от нашей воображаемой площадки, а n+ — плотность молекул на расстоянии длины свободного пробега справа от нее.
Распределение особых молекул в ящике удобно описывать с помощью непрерывной функции x, y и z, которую мы обозначим na. Под na(x, y, z) нужно понимать плотность особых молекул в маленьком объеме вокруг точки (x, y, z). Тогда разность (n+-n-) можно представить в виде
Подставляя этот результат в (43.22) и пренебрегая множителем 2, получаем
Мы выяснили, что поток особых молекул пропорционален производной плотности, или, как иногда говорят, «градиенту плотности».
Ясно, что мы сделали несколько грубых приближений. Не говоря уже о том, что мы постоянно забывали о множителях, мы использовали v, когда нужно было ставить vx, а разместив объемы, содержащие молекулы n+ и n-, на концах перпендикуляров к площадке, взяли перпендикуляры длиной l. Между тем для тех молекул, которые движутся не перпендикулярно к поверхности, l соответствует длине наклонного пути. Можно исправить эти недоделки; более тщательный анализ показал бы, что правую часть уравнения (43.24) нужно умножить на 1/3. Итак, более правильный ответ выглядит следующим образом:
Аналогичные уравнения можно написать для токов вдоль y- и z-направлений.
С помощью макроскопических наблюдений можно измерить ток Jx и градиент плотности dna/dx. Их отношение, найденное экспериментально, называется «коэффициентом диффузии» D. Это значит, что
Мы смогли показать, что ожидаемое значение коэффициента D для газа равно
Пока мы изучили в этой главе два разных процесса: подвижность (дрейф молекул под действием «внешней» силы) и диффузию (разбегание молекул, определяемое только внутренними силами, случайными столкновениями). Однако эти процессы связаны друг с другом, потому что в основе обоих явлений лежит тепловое движение, и оба раза в расчетах появлялась длина свободного пробега l.
Если в уравнение (43.25) подставить l=v? и ?=?m, то получится
Ho mv2 зависит только от температуры. Мы еще помним, что
так что
Таким образом, D, коэффициент диффузии, равен произведению kT на ?, коэффициент подвижности:
Оказывается, что (43.31) — это точное соотношение между коэффициентами. Хотя мы исходили из очень грубых предположений, не нужно к нему добавлять никаких дополнительных множителей. Можно показать, что (43.31) в самом деле всегда удовлетворяется точно. Это верно даже в очень сложных случаях (например, для случая взвешенных в жидкости мелких частиц), когда наши простые вычисления явно отказываются служить.
Чтобы показать, что (43.31) верно в самых общих случаях, мы выведем его иначе, используя только основные принципы статистической механики. Представьте себе, что почему-то существует градиент «особых» молекул и возник ток диффузии, пропорциональный, согласно (43.26), градиенту плотности. Тогда мы создадим в направлении оси х силовое поле так, что на каждую особую молекулу будет действовать сила F. По определению подвижности ? скорость дрейфа дается соотношением
Используя обычные аргументы, можно найти ток дрейфа (общее число молекул, пересекающих единичную площадку за единицу времени):
или
А теперь можно так распорядиться силой F, что ток дрейфа, вызываемый силой F, скомпенсирует диффузию, тогда полный ток особых молекул будет равен нулю. В этом случае мы имеем Jx+Jдр=0, или
В этом случае «компенсации» существует постоянный (во времени) градиент плотности, равный
Теперь уже легко соображать дальше! Ведь мы добились равновесия и можем теперь применять наши равновесные законы статистической механики. По этим законам вероятность найти молекулу около точки х пропорциональна ехр(-U/kT), где U — потенциальная энергия. Если говорить о плотности молекул nа, то это значит:
Дифференцируя (43.37) по х, получаем
или
В нашем случае сила F направлена вдоль оси х и потенциальная энергия U равна -Fx, а -dU/dx=F. Уравнение (43.39) принимает вид
[Это в точности уравнение (40.2), из которого мы и вывели ехр(-U/kT); круг замкнулся.] Сравнивая (43.40) и (43.36), мы получаем уравнение (43.31). Мы показали, что в уравнении (43.31), которое выражает ток диффузии через подвижность, все коэффициенты правильны, а само уравнение правильно всегда. Подвижность и диффузия тесно связаны. Эту связь открыл Эйнштейн.