§ 3. Радиационное затухание

Заряд, закрепленный на пружине с собственной частотой ?0 (или электрон в атоме), даже в абсолютно пустом пространстве не сможет колебаться бесконечно долго, поскольку, колеблясь, он теряет энергию на излучение. Никаких сил сопротивления в обычном смысле этого слова, никакой вязкости здесь нет. Но колебания не будут происходить «вечно», вследствие излучения они будут медленно замирать. А насколько медленно? Определим для осциллятора величину Q, вызванную так называемым радиационным сопротивлением или радиационным затуханием. Для любой колеблющейся системы величина Q равна энергии системы в данный момент времени, деленной на потери энергии, отнесенные к 1 рад:

Запишем Q по-другому, пользуясь для этого равенством dW/d?=(dW/dt)/(d? /dt)=-(dW/dt)/?:

Если Q задано, то легко получить закон спадания энергии колебаний: dW/dt=(-?/Q)W, откуда следует W=W0e-?t/Q; здесь W0 — начальная энергия (при t=0).

Чтобы найти Q для излучающего осциллятора, вернемся к формуле (32.8) и подставим вместо dW/dt выражение (32.6).

А что нужно взять в качестве энергии W осциллятора? Кинетическая энергия осциллятора равна 1/2mv2, а средняя кинетическая энергия равна m?2x02/4. Но мы помним, что полная энергия осциллятора равна средней кинетической плюс средняя потенциальная, причем обе они для осциллятора равны; поэтому полная энергия равна

(32.9)

Какую частоту следует подставить в наши формулы? Мы возьмем собственную частоту ?0, потому что практически это и есть частота излучения атома, а вместо m подставим me. После ряда сокращений эта формула приводится к виду

(32.10)

(Для большей ясности и из соображений близости к исторически принятой форме мы ввели величину е2=qe2/4??0 и записали 2?/? вместо ?0/с.) Поскольку величина Q безразмерна, множитель е2/mес2, зависящий только от массы и заряда электрона и выражающий его внутренние свойства, обязан иметь размерность длины. Он был назван классическим радиусом электрона, потому что в старых моделях электрона радиационное сопротивление пытались объяснить действием одной части электрона на другие его части, для чего размеры электрона приходилось выбирать порядка e2/mec2. Но эта величина потеряла свой прежний смысл, и никто теперь не считает, что электрон имеет такой радиус. Численное значение классического радиуса электрона следующее:

(32.11)

Вычислим теперь значение Q для атома, излучающего видимый свет, например для атома натрия. Длина волны излучения натрия равна примерно 6000 ? и находится в желтой части спектра; эта величина довольно типична. Отсюда

(32.12)

т. е. для атомов Q порядка 108. Это значит, что атомный осциллятор колеблется 108 рад, или примерно 107 периодов, прежде чем его энергия уменьшится в 1/е раз. Частота колебаний света v=с/? при длине волны 6000 ? составляет 1015 гц, а, следовательно, время жизни, т. е. время, за которое энергия уменьшится в 1/е раз, есть величина порядка 10-8сек.

Примерно за такое же время высвечиваются свободные атомы в обычных условиях. Проведенная оценка справедлива только для атомов в пустом пространстве, не подверженных никаким внешним воздействиям. Если электрон находится в твердом теле, он сталкивается с другими атомами и электронами, и тогда возникает добавочное сопротивление и затухание будет другим.

Величина эффективного сопротивления ?, определяющая сопротивление осциллятора, может быть найдена из соотношения 1/Q=?/?0; вспомним, что именно ? определяет ширину резонансной кривой (см. фиг. 23.2[24]). Итак, мы вычислили ширины спектральных линий для свободно излучающих атомов! Из равенства ?=2?c/? получаем

(32.13)