Специальная теория относительности: Галилей и Максвелл

Если Эйнштейн был новым воплощением Пифагора, то он многому научился за прошедшее время (благодаря множеству циклов реинкарнации). Эйнштейн, конечно, не отвергал открытий Ньютона, Максвелла и других героев научной революции и не отказывался от проявленного ими уважения к наблюдаемой реальности и конкретным фактам. Ричард Фейнман называл Эйнштейна «гигантом, чья голова находилась в облаках, но ноги стояли на земле».

В своей специальной теории относительности Эйнштейн примирил две идеи своих предшественников, которые, казалось, противоречили друг другу.

• Наблюдение Галилея о том, что движение системы как целого с постоянной скоростью не меняет законы Природы. Эта мысль является фундаментальной для астрономии Коперника и глубоко входит в механику Ньютона.

• Скорость света возникает из уравнений Максвелла как прямой результат основных законов Природы и не может меняться при переходе из одной системы в другую. Это однозначное следствие из электродинамической теории света Максвелла – теории, подтвержденной экспериментами Герца и многих других.

Между этими двумя идеями есть противоречие. Наш опыт говорит, что видимая скорость любого объекта изменится, если вы сами находитесь в движении. Ахилл догонит черепаху и даже обгонит ее. Почему с лучами света должно быть по-другому?

Эйнштейн разрешил это противоречие. Критически проанализировав действия, которые требуются для синхронизации часов, находящихся в различных местах, и то, как процесс синхронизации изменяется при общем движении с постоянной скоростью, Эйнштейн вскоре понял, что «время», приписываемое некоторому событию двигающимся наблюдателем, отличается от «времени», которое замечает фиксированный наблюдатель, причем различие зависит от места самого события. При описании событий, которые они наблюдают совместно, время, измеряемое одним наблюдателем, оказывается смешением пространства и времени другого, и наоборот. Как раз эта «относительность» пространства и времени была новшеством специальной теории относительности Эйнштейна. Оба допущения, которые легли в ее основу, были хорошо известны и общепризнаны до его работы, но никто не воспринимал их оба достаточно серьезно, чтобы потребовать их согласования и провести его.

Поскольку в уравнениях Максвелла содержится скорость света, второе допущение специальной теории относительности – о том, что скорость света инвариантна относительно преобразований Галилея, – прямо следует из основного мотива Эйнштейна – необходимости сохранить как уравнения Максвелла, так и галилееву симметрию. Но это намного более слабое допущение.

На самом деле Эйнштейн сумел полностью изменить порядок аргументации, показав, что можно вывести всю систему четырех уравнений Максвелла из одного из них, применив преобразования Галилея, чтобы восстановить общий случай. (Приведя заряд в движение, вы получаете токи, а приведя в движение электрические поля, вы получаете магнитные поля. Следовательно, закон, управляющий созданием электрических полей неподвижными электрическими зарядами, после галилеевых преобразований дает общий случай[65].) Этот потрясающий трюк нес в себе предчувствие будущего. Симметрия, а не дедукция из известных законов, стала основным принципом и начала свою собственную жизнь. Теперь можно было ограничивать еще неизвестные законы, требуя от них симметрии.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК